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ABSTRACT

We develop a representation of complex numbers separate from the Cartesian and polar rep-
resentations and define a representing functional for converting between representations. We
define the derivative of a function of a complex variable with respect to each representation
and then we examine the variation within the definition of the derivative. After studying the
transformation law for the variation between representations of complex numbers, we show
that the new representation has special properties which allow for a consistent modification
to the transformation law for the variation which preserves the definition of the derivative.
We refute a common proof that the limits of sine and cosine at infinity cannot exist. Then
we use the newly defined modified variation in the definition of the derivative to compute
the limits of sine and cosine at infinity.
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1 Development of Ĉ

1.1 Properties of real numbers R
Theorem 1.1.1

All functions of the form

f : R → R , with f(x) = mx+ b , m, b ∈ R , m 6= 0 ,

are one-to-one.

Proof:

We say f is a one-to-one function when

f(x1) = f(x2) ⇐⇒ x1 = x2 .

Evaluation of f(x) yields

mx1 + b = mx2 + b ⇐⇒ x1 = x2 .

All such functions f are one-to-one.

1.2 Properties of extended real numbers R
Definition 1.2.1

The extended real numbers are

R ≡ R ∪ {±∞} .

Definition 1.2.2

The additive absorptive properties of ±∞ are such that
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∀ b ∈ R ∃ ±∞ ∈ R , such that ±∞+ b = ±∞ .

Definition 1.2.3

The multiplicative absorptive properties of ±∞ are such that

∀ b ∈ R , b > 0 ∃ ±∞ ∈ R , such that ±∞× b = ±∞ .

Definition 1.2.4

The ∞ symbol is such that for xn > 0

xn ∈ R : lim
n→∞

xn = diverges −→ xn ∈ R : lim
n→∞

xn =∞ ,

for n ∈ N. (All further instances of n are implicitly n ∈ N.)

Theorem 1.2.5

There is no additive inverse defined for ∞.

Proof:

Consider two R sequences

xn = 2n , and yn = n ,

such that

lim
n→∞

xn =∞ , and lim
n→∞

yn =∞ .

It is an identity of limits that

lim
n→∞

(
xn − yn

)
= lim

n→∞
xn − lim

n→∞
yn .
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We obtain a contradiction with

lim
n→∞

(
xn − yn

)
= lim

n→∞
yn =∞

lim
n→∞

xn − lim
n→∞

yn =∞−∞ = 0 .

Therefore,

∞−∞ = undefined .

Definition 1.2.6

∞ does not have a multiplicative inverse so

∞
∞

= undefined .

Remarks 1.2.7

Even while ∞ does not have the inverse composition properties of the real numbers, R has
the useful property that one may use numbers on both sides of divergent limits. ∞ is a
special number that R was conceived to accommodate.

Theorem 1.2.8

Not all functions of the form

f : R → R , with f(x) = mx+ b , m, b ∈ R , m 6= 0 ,

are one-to-one.

Proof:

To show a contradiction with the definition of a one-to-one function, consider m = ∞.
By the absorptive properties of ∞
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f(x1) =∞x1 + b =∞ , and f(x2) =∞x2 + b =∞ ,

but

∞ =∞ 6⇐⇒ x1 = x2 .

We might show the same contradiction with b =∞. Therefore, functions of this type are
not always one-to-one.

Definition 1.2.9

For any n ≥ 1 we have

∞n =∞ .

1.3 Properties of modified extended real numbers R̂
Definition 1.3.1

Modified extended real numbers are

R̂ ≡ {±∞̂+ b : b ∈ R, b 6= 0} .

They have the properties that

∀ x ∈ R̂ ∃ b ∈ R , b 6= 0 , such that x = ±∞̂+ b ,

and

xn ∈ R : lim
n→∞

xn = diverges −→ xn ∈ R ∪ {∞̂} : lim
n→∞

xn = ∞̂ .

Remarks 1.3.2
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The main difference between ∞ and ∞̂ is that we suppress the additive absorptive property
of ∞ for ∞̂. In multiplication, we see that ∞̂ does not absorb −1 and when we make the
extension to complex numbers it will not absorb ±i.

Theorem 1.3.3

For any x ∈ R̂

x = a ∞̂+ b ⇐⇒ a, b ∈ R , a = ±1 , b 6= 0 .

Proof:

Proof follows from the definition of R̂.

Remarks 1.3.4

Numbers of the form

x = a ∞̂+ b , with a 6= ±1 , b 6= 0 ,

can be recast as R̂ numbers by applying the multiplicative absorptive properties of ∞̂. To
the contrary, numbers of the form

x = a ∞̂+ b , with b = 0 ,

cannot be cast as R̂ numbers.

Definition 1.3.5

The operations ∞̂ − ∞̂ and ∞̂/∞̂ are undefined.

Definition 1.3.6

The additive absorptive properties of ±∞̂ are such that

∀ b ∈ R , b 6= 0 ∃ ± ∞̂ ∈ R , such that ± ∞̂+ b 6= ±∞̂ .
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Expressions of the form ∞̂+ b are defined by self-identity.

Definition 1.3.7

The multiplicative absorptive properties of ±∞̂ are such that

∀ b ∈ R , b > 0 ∃ ± ∞̂ ∈ R , such that ± ∞̂ × b = ±∞̂ .

Definition 1.3.8

R̂ numbers are such that

∞̂+ a = ∞̂+ b ⇐⇒ a = b .

Definition 1.3.9

The additive composition law for R̂ + R is

(
±∞̂+ a

)
+ b = ±∞̂+

(
a+ b

)
.

Definition 1.3.10

The additive composition laws for R̂± ∞̂ are

(
±∞̂+ a

)
± ∞̂ =

(
±∞̂+ a

)
(
± ∞̂+ a

)
∓ ∞̂ = a .

Definition 1.3.11

The additive composition laws for R̂ + R̂ are
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(
±∞̂+ a

)
+
(
±∞̂+ b

)
= ±2 ∞̂+

(
a+ b

)
= ±∞̂+

(
a+ b

)
(
∞̂+ a

)
+
(
− ∞̂+ b

)
= a+ b ,

where

2 ∞̂ = ∞̂ ,

follows from the absorptive properties of ∞̂ (Definition 1.3.7.)

Theorem 1.3.12

The additive composition laws for R̂ do not require an additive inverse for ∞̂.

Proof:

Consider the additive composition of two R̂ numbers

x1 = ∞̂+ b1 , and x2 = ±∞̂+ b2 .

The case of b1 = b2 = 0 is ruled out by the definition of R̂.

Theorem 1.3.13

All R̂ numbers have an additive inverse.

Proof

Consider the case of b = −a in the identity(
∞̂+ a

)
+
(
− ∞̂+ b

)
= a+ b .

Then

∀ x = ∞̂+ a ∃ x′ = −∞̂ − a , such that x+ x′ = 0 .
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This is the definition of the additive inverse.

Remarks 1.3.14

We can extract a multiplicative composition law from the absorptive properties of ∞̂

b× ∞̂ = ∞̂ ,

but we cannot extract the law for division because multiplying both sides by ∞̂−1 yields the
undefined expression ∞̂ × ∞̂−1. If there was a multiplicative inverse for ∞̂ then we could
use the rule for division to write

∞̂+ b

∞̂
× ∞̂ = b× ∞̂ =⇒ ∞̂+ b = ∞̂ .

This contradicts the additive property of ∞̂ that

∞̂+ b 6= ∞̂ ,

so ∞̂/∞̂ must be undefined.

Remarks 1.3.15

Operations of the form R̂+ ∞̂− ∞̂ are undefined because ∞̂− ∞̂ is not defined. Add ∞̂ to
both sides of

(
∞̂+ a

)
− ∞̂ = a ,

to obtain

(
∞̂+ a

)
− ∞̂+ ∞̂ = a+ ∞̂ .

By adding the quantity in parentheses to either of ±∞̂ first and then adding ∓∞̂, we may
obtain two different values
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[(
∞̂+ a

)
− ∞̂

]
+ ∞̂ = a+ ∞̂ , and

[(
∞̂+ a

)
+ ∞̂

]
− ∞̂ = a .

To the contrary of R̂+∞̂−∞̂, expressions like
(
R̂+∞̂

)
−∞̂ and

(
R̂−∞̂

)
+∞̂ are perfectly

well defined because the order of operations is specified by the bracketing.

Definition 1.3.16

Infinity written as ∞̂ does not absorb infinity. In other words, for any n > 1

∞̂n 6= ∞̂ .

Definition 1.3.17

All composition laws written for ∞̂ apply for ∞̂n. For example,

(
∞̂2 + b

)
− ∞̂2 = b

(
∞̂2 + b

)
− ∞̂ 6= b

b× ∞̂2 = ∞̂2

b

∞̂2
= 0 .

Theorem 1.3.18

The additive inverse property of R̂ is consistent with the definition of the limit.

Proof:

Due to the absorptive properties of ∞, limits in R can have the form

lim
n→∞

xn =∞ =∞+ a , with xn, a ∈ R ,
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but there will never be a limit in R̂ of the form

lim
n→∞

xn = ∞̂ = ∞̂+ a , because ∞̂+ a 6= ∞̂ .

(This follows from Definition 1.3.6.) Therefore, one is not able to use the additive inverse

properties of R̂ to obtain a contradiction of the type used to prove Theorem 1.2.5.

Definition 1.3.19

R̂ numbers are such that

xn ∈ R : lim
n→∞

xn = ∞̂ −→ xn ∈ R̂ : lim
n→∞

xn = diverges ,

because ∞̂ 6∈ R̂.

Remarks 1.3.20

If we wanted to infinitely continue R̂→ R̂ in the fashion of R→ R such that

R̂ : lim
n→∞

xn = diverges −→ R̂ : lim
n→∞

xn = ∞̂ ,

then we would mirror the extension of

R → R∪{±∞} , with {±∞̂+b : b ∈ R, b 6= 0} → {±∞̂+b : b ∈ R} ,

where the case of b = 0 defines a special number ∞̂ without an additive inverse.

Definition 1.3.21

R̂ is defined such that for any a, b > 0(
∞̂ − a

)
>
(
∞̂ − b

)
⇐⇒ a < b .
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Remarks 1.3.22

A good way to visualize modified extended real numbers is to write

x ∈ R ⇐⇒ x ≡ 0̂ + x ,

where x measures distance from the origin 0̂. We may transfinitely extend the real number
line to include the points at infinity and an interval beyond such that ±∞̂ are the origins of

R̂. Then we have

x ∈ R̂ ⇐⇒ x = ±∞̂+ b ,

where b measures distance from another origin ∞̂ or −∞̂ located infinitely far away from
the Cartesian origin 0̂. In particular, this makes a lot of sense for the additive identity
(Definition 1.3.11)

(
∞̂+ a

)
+
(
∞̂+ b

)
= ∞̂+

(
a+ b

)

We have mentioned functions of the form

y = mx+ b ,

because the function which shifts the origin

f : b → ∞̂+ b ,

is a case of the same.

Theorem 1.3.23

All functions of the form

f : R → R̂ , with f(x) = mx+ b , m, b ∈ R ∪ R̂ , m 6= 0 ,

are one-to-one.
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Proof:

Consider m = ∞̂+ a1 and b = ∞̂+ a2. By the additive and multiplicative properties of
∞̂ we find that

f(x1) =
(
∞̂+ a1

)
x1 +

(
∞̂+ a2

)
=
(
∞̂+ a1x1

)
+
(
∞̂+ a2

)
= ∞̂+

(
a1x1 + a2

)
f(x2) =

(
∞̂+ a1

)
x2 +

(
∞̂+ a2

)
=
(
∞̂+ a1x2

)
+
(
∞̂+ a2

)
= ∞̂+

(
a1x2 + a2

)
.

By the non-absorptive additive properties of ∞̂

∞̂+
(
a1x1 + a2

)
= ∞̂+

(
a1x2 + a2

)
⇐⇒ x1 = x2 .

The case of m, b ∈ R was treated in Theorem 1.1.1, so we have shown that all such func-
tions are one-to-one.

1.4 Properties of modified extended complex numbers Ĉ
Definition 1.4.1

Complex numbers are

C ≡ {x+ iy : x ∈ R, y ∈ R} .

Definition 1.4.2

Extended complex numbers are

C ≡ {x+ iy : x ∈ R, y ∈ R} , where i∞ 6=∞ .

Definition 1.4.3

Modified extended complex numbers are such that

Ĉ ≡ {∞̂ ± i ∞̂+ Z,−∞̂ ± i ∞̂+ Z : Z ∈ C, Im(Z) 6= 0,Re(Z) 6= 0} .
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Definition 1.4.4

Infinitely continued modified extended complex numbers Ĉ are such that

Ĉ ≡ Ĉ ∪ {Im(z) = 0,Re(z) = 0} .

Definition 1.4.5

Ĉ is such that {±∞̂,±i ∞̂} are four distinct symbols, all of which are compound symbols
when we write “+∞̂.”

Definition 1.4.6

The additive composition laws for Ĉ + C are

(
∞̂ ± i ∞̂+ Z

)
+ z = ∞̂+±i ∞̂+

(
Z + z

)
(
− ∞̂ ± i ∞̂+ Z

)
+ z = −∞̂+±i ∞̂+

(
Z + z

)
.

Definition 1.4.7

The additive composition laws for Ĉ± ∞̂ and Ĉ± i ∞̂ are

(
∞̂ ± i ∞̂+ Z

)
± ∞̂ = ∞̂ ± i ∞̂+ Z

(
∞̂ ± i ∞̂+ Z

)
∓ ∞̂ = ±i ∞̂+ Z

(
∞̂ ± i ∞̂+ Z

)
± i ∞̂ = ∞̂ ± i ∞̂+ Z

(
∞̂ ± i ∞̂+ Z

)
∓ i ∞̂ = ∞̂+ Z .

Remarks 1.4.8

The additive properties of Ĉ + Ĉ are implicit in the other composition laws.

14



Definition 1.4.9

The multiplicative properties of ±∞̂ are

−1×±∞̂ = ∓∞̂

i×±∞̂ = ±i ∞̂

−i×±∞̂ = ∓i ∞̂

(
1 + i

)
×±∞̂ = undefined ,

and for any non-zero b ∈ R

b×±∞̂ = sign(b)×±∞̂ .

Definition 1.4.10

The multiplicative properties of ±i ∞̂ follow from Definition 1.4.9.

Definition 1.4.11

The absorptive properties of ±∞̂ are

∀ x ∈ R , x > 0 ∃ ∞̂ ∈ R̂ , such that x
(
∞̂
)

=
(
∞̂
)

∀ x ∈ R , x < 0 ∃ ∞̂ ∈ R̂ , such that x
(
∞̂
)

=
(
− ∞̂

)
.

Definition 1.4.12

The absorptive properties of ±i ∞̂ are

∀ x ∈ R , x > 0 , i ∞̂ ∈ R̂ , such that x
(
i ∞̂
)

=
(
i ∞̂
)

∀ x ∈ R , x < 0 , i ∞̂ ∈ R̂ , such that x
(
i ∞̂
)

=
(
− i ∞̂

)
.
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Theorem 1.4.13

Infinity ∞̂ does not obey the distributive property of multiplication.

Proof:

If ∞̂ had a distributive multiplicative property then(
1 + i)∞̂ = ∞̂+ i ∞̂ .

This contradicts the the multiplicative properties of ∞̂ (Definition 1.4.9).

Definition 1.4.14

For two modified extended complex numbers

z1 = ∞̂+ i ∞̂+ Z1 , and z2 = ∞̂+ i ∞̂+ Z2 ,

we have

z1 = z2 ⇐⇒ Z1 = Z2 .

Definition 1.4.15

Any sequence of the form

zn ∈ C , zn = xn + iyn , with xn, yn ∈ R , xn, yn > 0 ,

is such that

zn ∈ C :


lim
n→∞

xn = diverges

lim
n→∞

yn = diverges

, −→ zn ∈ Ĉ : lim
n→∞

zn = ∞̂+ i ∞̂ .

Corollary 1.4.16
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Ĉ is the complement of C on the Riemann sphere S2.

Proof

A is the complement of B on S2 if

S2 ≡ A ∪B .

The Riemann sphere is obtained from C by adding a point for infinity to both ends of
the real and imaginary axes and then imposing, in addition to the preexisting properties,
new conditions

±∞ =∞ , and ± i∞ =∞ .

It follows that

S2 ≡ {C : ±∞→∞,±i∞→∞} .

Imposing these conditions on Ĉ (Definition 1.4.3) gives

Ĉ → {∞} .

Since it is the definition of the Riemann sphere that

S2 ≡ C ∪ {∞} ,

we can use the definition of the complement to write

S2 ≡ C ∪ {Ĉ : ±∞̂ → ∞,±i ∞̂ → ∞} .

1.5 Properties of modified complex numbers Ĉ
Definition 1.5.1

17



Modified complex numbers Ĉ shall be such that

z ∈ Ĉ =⇒ z =


x+ iy+ for Im(z) > 0

x for Im(z) = 0

x− iy− for Im(z) < 0

,

where

y±(y) : R → R̂ ,

with

y+(y) = ∞̂ − y , and y−(y) = ∞̂+ y .

More broadly

Ĉ ≡ R ∪ {x± iy± : x ∈ R, y± ∈ R̂} .

Theorem 1.5.2

Ĉ numbers are such that

z ∈ Ĉ , z = x± iy± =⇒ 0 < y± <∞ .

Proof:

Theorem is proven with

|∞̂| =∞ .

y± are such that

y± : R → R̂ , and y± =
(
∞̂ ∓ y

)
, y ∈ R .
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By the definition of R̂, y± = ∞̂ and y± = 0 are not allowed. For any a, b ∈ R with a, b > 0
we have (Definition 1.3.21)(

∞̂ − a
)
>
(
∞̂ − b

)
⇐⇒ a < b ,

wherein a, b > 0 follows from the restriction of the domain of y±(y) in z = x + iy±

(Definition 1.5.1). This shows that y± increases as |y| decreases. Therefore,

sup y± = y±(inf |y|) .

y ∈ R gives

inf |y| = 0 =⇒ sup y± = ∞̂ − 0 = ∞̂ .

y± < ∞̂ follows because ∞̂ 6∈ R̂. To show that y± is always greater than zero, consider
that

∀ b ∈ R , ∞̂ > b =⇒ ∞̂− b > 0 .

Theorem 1.5.3

The y±(y) functions which generate Ĉ are analytic.

Proof:

It suffices to show that the functions satisfy the Cauchy–Riemann equations

∂u

∂x
=
∂v

∂y
, and

∂u

∂y
= −∂v

∂x
.

For

z = x± iy± = x± i
(
∞̂ ± y

)
,

we have

u = x , and v = ±
(
∞̂ ± y

)
.
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Analyticity follows by evaluation.

Remarks 1.5.4

When we use

z ∈ C =⇒ z = reiθ , r, θ ∈ R ,

where

r(x, y) =
√
x2 + y2 , and θ(x, y) = tan−1

(y
x

)
,

we do not need to define an entire new class of analysis with some variant of C′ to distinguish
it from

z ∈ C =⇒ z = x+ iy , x, y ∈ R .

In Ĉ, we did not add the point at infinity to C but we did take away the points along the real
and imaginary axes of C because ∞̂ − ∞̂ is not defined. Therefore, a unique construction
requires a unique label. With regards to Ĉ, however, we have neither added the point at
infinity nor taken away any points so there is an argument to be made that

Ĉ ≡ C .

2 Properties of C

2.1 Definition of a representation of complex numbers C
Definition 2.1.1

((x, y)) is the Cartesian representation of C in which

z(x, y) = x+ iy .

We say
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((x, y)) ≡ z(x, y) ≡ x+ iy .

Definition 2.1.2

((x2, y2)) is a representation of C if and only if ((x1, y1)) is a representation of C and there
exist two conversion functions

x2 = x2(x1, y1) , and y2 = y2(x1, y1) ,

whose domains are all of C.

Definition 2.1.3

For any function of a complex variable f(z)

f : C → C ⇐⇒ f(z1) : ((x1, y1)) → ((x1, y1)) .

Theorem 2.1.4

((r, θ)) is a representation of C.

Proof:

((x, y)) is a representation of C and we have two conversion functions

r(x, y) =
√
x2 + y2 , and θ(x, y) = tan−1

(y
x

)
.

((r, θ)) is a representation of C because all of C is in the domain of the conversion func-
tions.

Definition 2.1.5

If ((x1, y1)) and ((x2, y2)) are two representations of C then there exists a representing func-
tional of two conversion functions
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z((x2,y2))[((x1, y1))] : ((x1, y1)) → ((x2, y2)) ,

where x1(x2, y2), y1(x2, y2) are the two implicit conversion functions. The rule for construct-
ing the representing functional with the conversion functions x1(x2, y2) and y1(x2, y2) is that

((x1, y1)) ≡ z(x1, y1) −→ ((x2, y2)) ≡ z[x1(x2, y2), y1(x2, y2)] .

Example 2.1.6

Here we use the representing functional

z((r,θ))[((x, y)))] = ((r, θ)) .

to construct the polar representation of C from its Cartesian representation. The conversion
functions are

x(r, θ) = r cos(θ) , and y(r, θ) = r sin(θ) .

The representing functional is

z((r,θ))[((x, y))] = z((r,θ))[x+ iy] = r cos(θ) + ir sin(θ) = reiθ .

Therefore,

((r, θ)) = reiθ .

Example 2.1.7

Here we use the representing functional

z((x,y))[((r, θ))] = ((x, y)) .
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to construct the Cartesian representation of C from its polar representation. The conversion
functions are

r(x, y) =
√
x2 + y2 , and θ(x, y) = tan−1 y

x
.

The representing functional is

z((x,y))[((r, θ))] = z((x,y))[re
iθ]

=
√
x2 + y2 ei tan−1(y/x)

=
√
x2 + y2 cos

(
tan−1

(y
x

))
+ i
√
x2 + y2 sin

(
tan−1

(y
x

))

=
√
x2 + y2

 1√(y
x

)2

+ 1

+ i
√
x2 + y2


(y
x

)
√(y

x

)2

+ 1

 = x+ iy .

Therefore,

((x, y)) = x+ iy .

Remarks 2.1.8

The polar representation requires incorporation of the number e so we should consider other
representations that include different numbers such as ∞̂.

Definition 2.1.9

If we have a representation

((f(x2), g(y2))) ≡ z(x2, y2) ,

then the rule for constructing

z((f(x2),g(y2)))[((x1, y1))] = ((f(x2), g(y2))) ,
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is

z((f(x2),g(y2)))[((x1, y1))] ≡ z((f(x2),g(y2)))[f(x1), g(y1)] .

Example 2.1.10

To see that the rule for representations labeled with functions is consistent with the definition
of the representation, consider

f(x) = x , and g(y) = y ,

so that

z((f(x2),g(y2)))[((x1, y1))] = z((f(x2),g(y2)))[f(x1), g(y1)] .

To define the quantity in square brackets we need to know the form of z1 = (x1, y1). Let
((x1, y1)) be the Cartesian representation so that

z((f(x2),g(y2)))[((x1, y1))] = z((f(x2),g(y2)))[f(x1) + ig(y1)]

= f(x1(x2, y2)) + ig(y1(x2, y2))

= x1(x2, y2) + iy1(x2, y2) .

x1(x2, y2) and y1(x2, y2) are the conversion functions of the Cartesian representation ((x1, y1))
such that

z1(x1, y1) ≡ x1 + iy1 −→ z1(x2, y2) ≡ x1(x2, y2) + iy1(x2, y2) .

Theorem 2.1.11

The representation of C corresponding to Ĉ is

((x2, {∅,±∞̂ − y±})) ≡ z(x2, {0, y±}) ,
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with Cartesian conversion functions

x(x2, y
+) = x2 , and y(x2, y

+) =


∞̂ − y+ for Im(z) > 0

0 for Im(z) = 0

∞̂+ y− for Im(z) < 0

.

Proof:

All of C is in the domain of these functions. Ĉ is piecewise defined so it suffices to show
that the pieces satisfy the definitions. For ((x, ∅)) we have conversion functions

x(x2, y
+) = x2 , and y(x2, y

+) = 0 ,

such that

z((x2,∅))[((x, y))] = z(x,y)→((x2,∅))[x+ iy] = x(x2, y
+) + iy(x2, y

+) = x2 .

Therefore,

((x2, ∅)) = x2 , where x2 ≡ x .

For ((x2, ∞̂ − y+)) we have

f(x) = x , and g(y) = ∞̂ − y .

Therefore,

f(x1(x2, y2)) + ig(y1(x2, y2)) = x1(x2, y2) + i
(
∞̂ − y1(x2, y2)

)
.

For z ∈ Ĉ with Im(z) > 0, our conversion functions are

x(x2, y
+) = x2 , and y(x2, y

+) = ∞̂ − y+ .
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The representing functional of the conversion functions is

z((x2,∞̂−y+))[((x, y))] = z(x,y)→(x,y+)[x+ ig(y)]

= x(x2, y
+) + i

(
∞̂ − y(x2, y

+)
)

= x2 + i
[
∞̂ −

(
∞̂ − y+

)]
.

Since y+ 6∈ R, the quantity in parentheses is not an R̂ number and the quantity in square

brackets is not formatted for an additive composition ∞̂ − R̂. Substitute y+ = ∞̂ − y so
that

z((x2,∞̂−y+))[((x, y))] = x2 + i
{
∞̂ −

[
∞̂ −

(
∞̂ − y

)]}
.

The quantity in square brackets obeys the additive composition laws for R̂ + ∞̂ so

z((x2,∞̂−y+))[((x, y))] = x2 + i
(
∞̂ − y

)
= x2 + iy+ .

Therefore,

((x2, ∞̂ − y+)) = x2 + iy+ .

The final case is ((x2,−∞̂ − y−)). We have

f(x) = x , and g(y) = −∞̂ − y .

Therefore,

f(x1(x2, y2)) + ig(y1(x2, y2)) = x1(x2, y2) + i
(
− ∞̂ − y1(x2, y2)

)
.
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For z ∈ Ĉ with Im(z) < 0, our conversion functions are

x(x2, y
−) = x2 , and y(x2, y

−) = y− − ∞̂ .

The representing functional is

z((x2,−∞̂−y−))[((x, y))] = z((x2,∞̂+y−))[x+ ig(y)]

= x(x2, y
+)− i

(
∞̂+ y(x2, y

−)
)

= x2 − i
[
∞̂+

(
y− − ∞̂

)]
.

Since y− 6∈ R, the quantity in parentheses is not an R̂ number. The quantity in square

brackets is not formatted for an additive composition ∞̂ − R̂. Substitute y− = ∞̂+ y so
that

z((x2,−∞̂−y−))[((x, y))] = x2 − i
{
∞̂+

[(
∞̂+ y

)
− ∞̂

]}
.

The quantity in square brackets obeys the additive composition laws for R̂ + ∞̂ so

z((x2,−∞̂−y−))[((x, y))] = x2 − i
(
∞̂+ y

)
= x2 − iy− .

Therefore,

((x2,−∞̂ − y−)) = x2 − iy− .

We have proven that

((x2, {∅,±∞̂ − y±})) ≡


x2 + iy+ for Im(z) > 0

x2 for Im(z) = 0

x2 − iy− for Im(z) < 0

.
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Example 2.1.12

In this example we show that the representing functional correctly recovers the Cartesian
representation from the Ĉ representation. The conversion functions are

x(x, y) = x , and y+(x, y) = ∞̂ − y .

and the representing functional is

z((x,y))[((x, ∞̂ − y+))] = z((x,y))[x+ i
(
∞̂ − y+

)
]

= x(x, y) + i
(
∞̂ − y+(x, y)

)
= x+ i

[
∞̂ −

(
∞̂ − y

)]
= x+ iy .

We have shown that the representing functional takes the Ĉ representation and returns the
Cartesian representation.

Remarks 2.1.13

At this point, the reader hopefully is asking, “What is this convoluted notation for?” We in-
troduce the rigorous representation to quantify what we mean by phrases like “the Cartesian
representation of C,” or “the polar representation of C,” or even “the Ĉ representation of C.”
For instance, we might wish to state precisely that the conversion functions of the Cartesian
representation to the polar representation are analytic but the conversion functions of the
Cartesian representation to the Ĉ representation are one-to-one. Not only that, y±(x, y)
are analytic functions while x2(x, y) = Re(z(x, y)) is not a complex analytic function in any
representation of C.

Example 2.1.14

Consider a complex number

z+
0 = α + i ∞̂ .
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expressed in the z+ piece of the Ĉ representation. This number can never appear in the
conversion from the Cartesian representation to the Ĉ representation due to the piecewise
definitions for Im(z) = 0. However, we might begin with a number in the Ĉ representation
and wish to express it in the Cartesian representation. If we plug z+

0 directly into the repre-
senting functional then we will obtain an undefined expression. The representing functional
is

z((x,y))[((x, ∞̂ − y+))] = z((x,y))[x+ i
(
∞̂ − y+

)
]

= z((x,y))[α + i
(
∞̂ − ∞̂

)
] .

but we would have no way to evaluate the undefined expression. Since α is real, we can not

put it inside the parentheses to form and R̂ number. Therefore, the representing functional

is not defined for y± = ∞̂. However, if we require y± ∈ R̂ then we will never encounter the
values y± = ∞̂.

Corollary 2.1.15

As an illustration of the high significance of conversion functions, consider the Gaussian
integral

I =

∫ ∞
−∞

dx e−x
2

.

This integral is analytically intractable in the Cartesian representation of C (except by
quadrature) but it can be solved easily in the polar representation. We write canonically

I2 =

∫ ∞
−∞

dx e−x
2 ×

∫ ∞
−∞

dx e−x
2

=

∫ ∞
−∞

dx

∫ ∞
−∞

dy e−(x2+y2) ,

and then insert the conversion function

r(x, y) =
√
x2 + y2 .

We obtain the infinitesimal element of polar area from the conversion functions

x(r, θ) = r cos(θ) , and x(r, θ) = r cos(θ) ,
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via

dx =
∂x

∂r
dr +

∂x

∂θ
dθ , and dy =

∂y

∂r
dr +

∂y

∂θ
dθ .

Then

I2 =

∫ 2π

0

dθ

∫ ∞
0

dr re−r
2 ⇐⇒ I(z) =

√
π .

2.2 Definition of the representational derivative d/dz1

Remarks 2.2.1

To prove the limits of sine and cosine at infinity, we will use the definition of the derivative.
First, we will compare the conventions for derivatives with respect to

z = x+ iy , and z = reiθ ,

and then we will define derivatives with respect to

z =


x+ iy+ for Im(z) > 0

x for Im(z) = 0

x− iy− for Im(z) < 0

.

We will use the definition of the representation to increase the specificity of the distinctions
that we make.

Definition 2.2.2

The forward derivative of a complex-valued function is

d

dz
f(z) = lim

∆z→0

f(z + ∆z)− f(z)

∆z
, with ∆z = z+

(
h−z

)
, h ∈ C , h→ 0 .

Theorem 2.2.3
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The function f(z) = ez is an eigenfunction of the d/dz operator with unit eigenvalue.

Proof:

Using the definition of the derivative we find that

d

dz
ez = lim

∆x→0
∆y→0

ez+∆z − ez

∆z

= lim
∆x→0
∆y→0

ex+iy+∆x+i∆y − ex+iy

∆x+ i∆y

= lim
∆y→0

ex+iy+i∆y − ex+iy

i∆y

∗
= lim

∆y→0

iex+iy+i∆y+

i

= ez .

(The
∗
= symbol denotes an application of L’Hôpital’s rule.)

Remarks 2.2.4

The derivatives with respect to the polar and Cartesian representations are

d

dz
f(z) = lim

∆r→0
∆θ→0

f(z + ∆z)− f(z)

∆z
, and

d

dz
f(z) = lim

∆x→0
∆y→0

f(z + ∆z)− f(z)

∆z
,

with

∆z = z +
(
h− z

)
, h ∈ C , h→ 0 .

There is usually no distinguishing between the two distinct instances of d/dz. We will be
doing some tricks with these distinctions so it will be useful to distinguish the derivative
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with respect the each individual representation of complex numbers.

Definition 2.2.5

The representational derivative

d

dz1

f(z) = lim
∆x1→0
∆y1→0

f(z + ∆z)− f(z)

∆z

is such that the variables of the z1 representation appear in the limit while the variables of
z appear in the limiting function. For instance, when Ĉ is a representation of C even while
((x, ∅)), ((x,±∞̂ − y±)) are individually not, we have

d

dz
f(z) = lim

∆x→0
∆y→0

f(z + ∆z)− f(z)

∆z
, for z(x, y) = x+ iy

d

dz′
f(z′) = lim

∆r→0
∆θ→0

f(z′ + ∆z′)− f(z′)

∆z′
, for z′(r, θ) = reiθ

d

dz+
f(z+) = lim

∆x→0
∆y+→0

f(z+ + ∆z+)− f(z+)

∆z+
, for z+(x, y+) = x+ iy+

d

dz∅
f(z∅) = lim

∆x→0

f(z∅ + ∆z∅)− f(z∅)

∆z∅
, for z∅(x, ∅) = x

d

dz−
f(z−) = lim

∆x→0
∆y−→0

f(z− + ∆z−)− f(z−)

∆z−
, for z−(x, y−) = x− iy− .

2.3 Definition of the representational variation ∆z1

Definition 2.3.1

The variation of a C number in the definition of the representational derivative is

∆z1 = z1 +
(
h1 − z1

)
, h ∈ C , h→ 0 .
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The variation with respect to each representation has its own h1.

Definition 2.3.2

The representing functional for the variation is

∆z((x2,y2))[((x1, y1))] ≡ ∆z1(x2, y2) =
∂z1

∂x2

∆x2 +
∂z1

∂y2

∆y2 .

Remarks 2.3.3

The transformation law for writing the various ∆z that appear in the representational deriva-
tives is

∆z2(x1, y1) =
∂z2

∂x1

∆x1 +
∂z2

∂y1

∆y1 .

The variation ∆z appears in each application of the representational derivative operator

d

dz1

f(z1) = lim
∆x1→0
∆y1→0

f(z1 + ∆z1)− f(z1)

∆z1

.

One might wish to use the conversion functions to rewrite the definition of the derivative so
that ∆z is not expressed in terms of (∆x1,∆y1). Therefore, we will give careful attention to
representational derivatives of the mixed form

d

dz1

f(z2) = lim
∆x1→0
∆y1→0

f(z2 + ∆z2)− f(z2)

∆z2

.

Remarks 2.3.4

For the representing functional

z((x2,y2))[((x1, y1))] = ((x2, y2)) ,

we use the conversion functions
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x1(x2, y2) = fx(x2, y2) , and y1(x2, y2) = fy(x2, y2) ,

but for the representing functional for the variation we use the reverse conversion functions

x2(x1, y1) = f ′x(x1, y1) , and y2(x1, y1) = f ′y(x1, y1) .

It is clear from the context which is which and we will give several examples. For conversion
functions like y+ = ∞̂ − y, we can easily obtain the conversion in either direction from a
single function.

Definition 2.3.5

For the case of

d

dz
f(z+) = lim

∆x→0
∆y→0

f(z+ + ∆z+)− f(z+)

∆z+
,

we have

z+(x, y+) = x+ iy+ ,

with two conversion functions

x(x, y) = x , and y+(x, y) = ∞̂ − y .

The transformation law for the variation is

∆z((x,y))[((x, ∞̂ − y+))] ≡ ∆z+(x, y) =
∂z+

∂x
∆x+

∂z+

∂y
∆y

=
∂

∂x

(
x+ iy+

)
∆x+

∂

∂y

(
x+ iy+

)
∆y

=
∂

∂x

[
x+ i

(
∞̂ − y

)]
∆x+

∂

∂y

[
x+ i

(
∞̂ − y

)]
∆y

= ∆x− i∆y .
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Definition 2.3.6

For the case of

d

dz
f(z−) = lim

∆x→0
∆y→0

f(z− + ∆z−)− f(z−)

∆z−
,

we have

z−(x, y−) = x− iy− ,

with two conversion functions

x(x, y) = x , and y−(x, y) = ∞̂+ y .

The transformation law for the variation is

∆z((x,y))[((x,−∞̂ − y−))] ≡ ∆z−(x, y) =
∂z−

∂x
∆x+

∂z−

∂y
∆y

=
∂

∂x

(
x− iy−

)
∆x+

∂

∂y

(
x− iy−

)
∆y

=
∂

∂x

[
x− i

(
∞̂+ y

)]
∆x+

∂

∂y

[
x− i

(
∞̂+ y

)]
∆y

= ∆x− i∆y .

Definition 2.3.7

For the case of

d

dz+
f(z) = lim

∆x→0
∆y+→0

f(z + ∆z)− f(z)

∆z
,
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we have

z(x, y) = x+ iy ,

with two conversion functions

x(x, y+) = x , and y(x, y+) = ∞̂ − y+ .

The transformation law for the variation is

∆z((x,∞̂−y+))[((x, y))] ≡ ∆z(x, y+) =
∂z

∂x
∆x+

∂z

∂y+
∆y+

=
∂

∂x

(
x+ iy

)
∆x+

∂

∂y+

(
x+ iy

)
∆y+

=
∂

∂x

[
x+ i

(
∞̂ − y+

)]
∆x+

∂

∂y+

[
x+ i

(
∞̂ − y+

)]
∆y+

= ∆x− i∆y+ .

Definition 2.3.8

For the case of

d

dz−
f(z) = lim

∆x→0
∆y−→0

f(z + ∆z)− f(z)

∆z
,

we have

z(x, y) = x+ iy ,

with two conversion functions

x(x, y−) = x , and y(x, y−) = y− − ∞̂ .

36



The transformation law for the variation is

∆z((x,−∞̂−y−))[((x, y))] ≡ ∆z(x, y−) =
∂z

∂x
∆x+

∂z

∂y−
∆y−

=
∂

∂x

(
x+ iy

)
∆x+

∂

∂y−
(
x+ iy

)
∆y−

=
∂

∂x

[
x+ i

(
y− − ∞̂

)]
∆x+

∂

∂y−
[
x+ i

(
y− − ∞̂

)]
∆y−

= ∆x+ i∆y− .

Remarks 2.3.9

Notice that the variation is the same between the two cases of z+ but the sign changes
between to the conversions to and from z−. This is a manifestation of the minus sign in

z− = x− iy− .

Definition 2.3.10

For the case of

d

dz
f(z′) = lim

∆x→0
∆y→0

f(z′ + ∆z′)− f(z′)

∆z′
,

we have

z′(r, θ) = reiθ ,

with two conversion functions

r(x, y) =
√
x2 + y2 , and θ(x, y) = tan−1 y

x
.

The transformation law for the variation is
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∆z′((x,y))[((r, θ))] ≡ ∆z′(x, y) =
∂z′

∂x
∆x+

∂z′

∂y
∆y

=
∂

∂x

(
reiθ
)
∆x+

∂

∂y

(
reiθ
)
∆y

We have shown in Example 2.1.7 that the conversion functions yield x+ iy so

∆z′(x, y) =
∂

∂x

(
x+ iy

)
∆x+

∂

∂y

(
x+ iy

)
∆y

= ∆x+ i∆y .

Definition 2.3.11

For the case of

d

dz′
f(z) = lim

∆r→0
∆θ→0

f(z + ∆z)− f(z)

∆z
,

we have

z(x, y) = x+ iy ,

with two conversion functions

x(r, θ) = r cos(θ) , and y(r, θ) = r sin(θ) .

The transformation law for the variation is

∆z((r,θ))[((x, y))] ≡ ∆z(r, θ) =
∂z

∂r
∆r +

∂z

∂θ
∆θ

=
∂

∂r

(
x+ iy

)
∆r +

∂

∂θ

(
x+ iy

)
∆θ
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We have shown in Example 2.1.6 that the conversion functions yield reiθ so

∆z′(x, y) =
∂

∂r

(
reiθ
)
∆r +

∂

∂θ

(
reiθ
)
∆θ

= eiθ∆r + ireiθ∆θ .

Example 2.3.12

In this example we will consider the derivative of 3z2 with four different representational
derivatives.

Example 2.3.12.1

Consider the function f(z) = 3z2 and its representational derivative

d

dz
f(z+) = lim

∆x→0
∆y→0

f(z+ + ∆z+)− f(z+)

∆z+
.

The conversion functions are

x(x, y) = x , and y+(x, y) = ∞̂ − y .

The transformation law for the variation is

∆z((x,∞̂−y+))[((x, y))] ≡ ∆z+(x, y) = ∆x− i∆y .

Evaluation yields

d

dz
3
(
z+
)2

= lim
∆x→0
∆y→0

3
(
z+ + ∆z+

)2 − 3
(
z+
)2

∆z+

= lim
∆x→0
∆y→0

3
(
x+ iy+ + ∆z+

)2 − 3
(
x+ iy+

)2

∆z+
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= lim
∆x→0
∆y→0

3
[
x+ i

(
∞̂ − y

)
+ ∆x− i∆y

]2 − 3
[
x− i

(
∞̂ − y

)]2
∆x− i∆y

= lim
∆y→0

3
[
x+ i

(
∞̂ − y

)
− i∆y

]2 − 3
[
x+ i

(
∞̂ − y

)]2
−i∆y

∗
= lim

∆y→0

−6i
[
x+ i

(
∞̂ − y

)
− i∆y

]
−i

= 6
[
x+ i

(
∞̂ − y

)]
= 6
(
x+ iy+

)
= 6z+ .

This example has demonstrated the validity of the transformation law for the variation.

Example 2.3.12.2

Consider the function f(z) = 3z2 and its representational derivative

d

dz′
f(z) = lim

∆r→0
∆θ→0

f(z + ∆z)− f(z)

∆z
.

The conversion functions are

x(r, θ) = r cos(θ) , and y(r, θ) = r sin(θ) .

The transformation law for the variation is

∆z((r,θ))[((x, y))] ≡ ∆z(r, θ) = eiθ∆r + ireiθ∆θ

Converting to polar gives

d

dz′
3z2 = lim

∆r→0
∆θ→0

3
(
z(r, θ) + ∆z(r, θ)

)2 − 3
(
z(r, θ)

)2

∆
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= lim
∆r→0
∆θ→0

3
(
reiθ + eiθ ∆r + ireiθ ∆θ

)2 − 3
(
reiθ
)2

eiθ ∆r + ireiθ ∆θ

= lim
∆θ→0

3
(
reiθ + ireiθ ∆θ

)2 − 3
(
reiθ
)2

ireiθ ∆θ

∗
= lim

∆θ→0

6ireiθ
(
reiθ + ireiθ ∆θ

)
ireiθ

= 6
(
reiθ
)

= 6z .

We have the correct transformation law for ∆z.

Example 2.3.12.3

Consider the function f(z) = 3z2 and its representational derivative

d

dz
f(z∅) = lim

∆x→0
∆y→0

f(z∅ + ∆z∅)− f(z∅)

∆z∅
.

The conversion functions are

x(x, ∅) = x , and y∅(x, ∅) = 0 .

The transformation law for the variation is

∆z((x,y))[((x, ∅))] ≡ ∆z∅(x, y) =
∂

∂x

(
x
)
∆x = ∆x .

This case reduces to R. Note that the non-analyticity of the conversion functions

x2(x, y) = x , and y+(x, y) =


∞̂ − y for Im(z) > 0

0 for Im(z) = 0

∞̂+ y for Im(z) < 0

.
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only occurs in the ((x, ∅)) piece of the representation. This is exactly the piece which is
more properly treated with real rather than complex analysis, and complex analyticity
has nothing to do with real analysis. The conversion functions of the expansive ((x, {∅,±∞̂
−y±})) regions are themselves analytic so it is highly likely that the ((x, {∅,±∞̂ − y±}))
representation shares all of the most favorable analytic properties of the z and z′ repre-
sentations while having the added benefit of being one-to-one. Evaluation yields

d

dz
3
(
z∅
)2

= lim
∆x→0

3
(
x+ ∆x

)2 − 3
(
x
)2

∆x
∗
= lim

∆x→0
6
(
x+ ∆x

)
= 6x = 6z∅ .

Example 2.3.12.4

Consider the function f(z) = 3z2 and its representational derivative

d

dz−
f(z) = lim

∆x→0
∆y−→0

f(z + ∆z)− f(z)

∆z
,

The conversion functions are

x(x, y−) = x , and y(x, y−) = y− − ∞̂ .

The transformation law for the variation is

∆z((x,−∞̂−y−))[((x, y
−))] ≡ ∆z(x, y−) = ∆x+ i∆y− .

Evaluation yields

d

dz−
3
(
z
)2

= lim
∆x→0

∆y−→0

3
(
z + ∆z

)2 − 3
(
z
)2

∆z

= lim
∆x→0

∆y−→0

3
(
x+ iy + ∆z

)2 − 3
(
x+ iy

)2

∆z

= lim
∆x→0

∆y−→0

3
[
x+ i

(
y− − ∞̂

)
+ ∆x+ i∆y

]2 − 3
[
x− i

(
y− − ∞̂

)]2
∆x+ i∆y
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= lim
∆y−→0

3
[
x+ i

(
y− − ∞̂

)
+ i∆y

]2 − 3
[
x+ i

(
y− − ∞̂

)]2
i∆y

∗
= lim

∆y−→0

6i
[
x+ i

(
y− − ∞̂

)
+ i∆y

]
i

= 6
[
x+ i

(
y− − ∞̂

)]
= 6
(
x+ iy

)
= 6z .

This example has demonstrated the validity of the transformation law for the variation.

Example 2.3.13

Consider the function f(z) = ln(z) and its representational derivative

d

dz
f(z−) = lim

∆x→0
∆y→0

f(z− + ∆z−)− f(z−)

∆z−
.

The conversion functions are

x(x, y) = x , and y−(x, y) = ∞̂+ y .

The transformation law for the variation is

∆z((x,y))[((x,−∞̂ − y))] ≡ ∆z−(x, y) = ∆x− i∆y .

Evaluation yields

d

dz
ln(z−) = lim

∆x→0
∆y→0

ln(z− + ∆z−)− ln(z−)

∆z−

= lim
∆x→0
∆y→0

ln(x− iy− + ∆x− i∆y)− ln(x− iy−)

∆x− i∆y

= lim
∆x→0

ln(x− iy− + ∆x)− ln(x− iy−)

∆x
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∗
= lim

∆x→0

1

x− iy− + ∆x
=

1

x− iy−
=

1

z−
.

Theorem 2.3.14

The representational derivative d/dz1 obeys the chain rule.

Proof:

For proof by example, consider the derivative of f(z)=3ze2z in the form

d

dz+
f(z) = lim

∆x→0
∆y+→0

f(z + ∆z)− f(z)

∆z
.

The conversion functions are

x(x, y+) = x , and y(x, y+) = ∞̂ − y+ .

The transformation law for the variation is

∆z((x,∞̂−y+))[((x, y))] ≡ ∆z(x, y+) = ∆x− i∆y+ .

Evaluation yields

d

dz+
3ze2z = lim

∆x→0
∆y+→0

3
(
z + ∆z

)
e2(z+∆z) − 3ze2z

∆z

= lim
∆x→0

∆y+→0

3
(
x+ iy + ∆z

)
e2(x+iy+∆z) − 3

(
x+ iy

)
e2(x+iy)

∆z

= lim
∆x→0

∆y+→0

[
3
[
x+ i

(
∞̂ − y+

)
+ ∆x− i∆y+

]
e2[x+i(∞̂−y+)+∆x−i∆y+]

∆x− i∆y+
− ...

...−
3
[
x+ i

(
∞̂ − y+

)]
e2[x+i(∞̂−y+)]

∆x− i∆y+

]
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= e2[x+i(∞̂−y+)] lim
∆y+→0

3
[
x+ i

(
∞̂ − y+

)
− i∆y+

]
e−2i∆y+ − 3

[
x+ i

(
∞̂ − y+

)]
−i∆y+

.

∗
= e2[x+i(∞̂−y+)] lim

∆y+→0

−3ie−2i∆y+ − 6i
[
x+ i

(
∞̂ − y+

)
− i∆y+

]
e−2i∆y+

−i

= e2[x+i(∞̂−y+)]
{

3 + 6
[
x+ i

(
∞̂ − y+

)]}
= e2[x+i(∞̂−y+)]

[
3 + 6

(
x+ iy

)]
= e2z

(
3 + 6z

)
.

We have shown that the representational derivative satisfies the chain rule.

Theorem 2.3.15

The complex exponential function ez is an eigenfunction of the representational derivative
operator d/dz1.

Proof:

It suffices to show that

d

dz1

ez1 = ez1 , and
d

dz1

ez2 = ez2 ,

where z1 and z2 are two representations of C. The first condition is satisfied by Theorem
2.2.3. For the second condition, consider

d

dz
f(z+) = lim

∆x→0
∆y→0

f(z+ + ∆z+)− f(z+)

∆z+
,

with two conversion functions

x(x, y) = x , and y+(x, y) = ∞̂ − y .

The transformation law for the variation is (Definition 2.3.5)
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∆z((x,y))[((x, ∞̂ − y+))] ≡ ∆z+(x, y) = ∆x− i∆y .

Evaluation yields

d

dz
ez

+

= lim
∆x→0
∆y→0

ez
++∆z+ − ez+

∆z+

= lim
∆x→0
∆y→0

ex+iy++∆z+ − ex+iy+

∆z+

= lim
∆x→0
∆y→0

ex+i(∞̂−y)+∆x−i∆y − ex+i(∞̂−y)

∆x− i∆y

= lim
∆x→0

ex+i(∞̂−y)+∆x − ex+i(∞̂−y)

∆x

∗
= lim

∆x→0
ex+i(∞̂−y)+∆x

= ex+i(∞̂−y) = ex+iy+ = ez
+

.

Definition 2.3.16

When we write the representational derivative, the limits are in the representation of the
derivative and the function is in its own representation (which may or may not be the rep-
resentation of the derivative). When we implement the transformation law for the variation,
we are inserting the variation of the representation of the derivative into the other represen-
tation. Consider

d

dz2

f(z1) = lim
∆x2→0
∆y2→0

[
f(z1 + ∆z1)− f(z1)

∆z1

]
.

Even after the variation has been transformed ∆z1 → ∆z2, everything in square brackets
remains in the z1 representation.
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2.4 Definition of the modified representational variation ∆̂z1

Remarks 2.4.1

We have shown that we have the correct transformation law for the variation with respect
to each representation. In this section, we will examine the definition of the variation and
propose a modified variation which obeys a separate transformation law. We will show that
the two transformations do not always agree, and that the transformation of the modified
variation does not always work for the definition of the derivative. Then we will show that
the transformation of the modified variation does always produce the correct derivative when
the transformation is between the z and z± representations. This is due to the composition

laws of R̂ and the properties of ∞̂.

Example 2.4.2

The 1D case of

∆x = x+
(
h− x

)
, h ∈ R , h→ 0 .

gives a good illustration of the meaning of the definition of the variation. Considering three
points {0, x, h} along the real number line, we could shift the origin to any other x ∈ R and
then write the definition of the variation with respect to those coordinates. For instance,
if we shift h → h′ then h → 0 no longer generates an appropriate variation. We need to
take h′ → 0 which means h goes to whatever value we have used to shift the origin. By the
symmetry of the real line, either of these representations of the 1D variation ∆x are exactly
the same. Therefore, define a representation of C such that

z((x,yγ))[((x, y))] = ((x, yγ)) , with zγ = x+ iyγ .

We have two conversion functions

x(x, yγ) = x , and y(x, yγ) = γ − yγ ,

so that

((x, yγ)) ≡ zγ(x, yγ) , and ((x, y)) ≡ z(x, y) .

(We have shifted the origin of y instead of x to mimic the structure of Ĉ.) For the ((x, y))
Cartesian representation of C, we have
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h1 = a1 + ib1 , and hγ = x(a, b) + iy(a, b) = a+ i
(
γ − b

)
.

Therefore, the modified variation transforms as

∆̂z
γ
(x, y) = zγ +

(
hγ − zγ

)
= zγ(x, y) +

(
hγ − zγ(x, y)

)
= x(x, y) + iyγ(x, y) +

[
aγ + ibγ −

(
x(x, y) + iyγ(x, y)

)]
= x+ i

(
γ − y

)
+
{
a+ i

(
γ − b

)
−
[
x+ i

(
γ − y

)]}
= x+ iγ − iy + a+ iγ − ib− x− iγ + iy

=
(
x+ a− x

)
+
(
iy − ib+ iy

)
+ iγ

= ∆x+ i
(
γ −∆y

)
.

The transformation law for the canonical variation ∆z gives

∆zγ(x, y) =
∂

∂x

[
x+ i

(
γ − y

)]
∆x+

∂

∂y

[
x+ i

(
γ − y

)]
∆y

= ∆x− i∆y .

We find

∆̂z
γ
(x, y) = ∆zγ(x, y) + iγ .

Therefore, the transformation law for the variation does not agree with our attempt to
transform the modified variation by directly converting its elements with the conversion
functions. We will show, however, that this not a problem in all cases.
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Definition 2.4.3

The modified representational variation of a C number is

∆̂z1 = z1 +
(
h1 − z1

)
, h ∈ C , h→ 0 ,

so it is identically the representational variation ∆z1. The difference between ∆z1 and ∆̂z1

is that they obey different transformation laws.

Definition 2.4.4

We say the representing functional for the modified variation is

∆̂z((x2,y2))[((x1, y1))] ≡ ∆̂z1(x2, y2) .

Definition 2.4.5

The modified variation ∆̂z1 transforms by direct substitution of the conversion functions.
The transformation law defined for

h1 = a+ ib , a, b ∈ R , a, b→ 0 ,

is

∆̂z1(x2, y2) = z1[x1(x2, y2), y1(x2, y2)] +
(
x1(a, b) + iy1(a, b)− z1[x1(x2, y2), y1(x2, y2)]

)
.

Example 2.4.6

Take note of

∆̂z
−

(x, y) = x(x, y)− iy−(x, y) +
[
x(a, b)− iy−(a, b)−

(
x(x, y)− iy−(x, y)

)]
.

Since z− is a non-trivial representation, we may not directly decompose the z1[x1, y1] of
Definition 2.4.5 into a general form x1(x2, y2) + iy1(x2, y2). For this reason, Definition 2.4.5
specifies h in the Cartesian representation. There are other cases in which h will not have
the form a+ ib.
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Definition 2.4.7

The infinite continuation of ∆̂z
γ

is

∆̂z
+

(x, y) ≡ lim
γ→∞̂

∆̂z
γ
(x, y) .

Example 2.4.8

The continuation of ∆̂z
γ

to minus infinity, as defined, cannot be used to directly generate

∆̂z
−

. Instead we need to consider two conversion functions

x(x, yγ
′
) = x , and y(x, yγ

′
) = yγ

′ − ∞̂ ,

In this case yγ
′

has the same form as y− = ∞̂+ y. The transformation law is

∆̂z
γ′

(x, y) = zγ
′
[x(x, y), yγ

′
(x, y)] +

(
x(a, b) + iyγ

′
(a, b)− zγ′ [x(x, y), yγ

′
(x, y)]

)
.

To mimic the form of z−, we will choose for this example

zγ
′
(x, yγ

′
) = x− iyγ′ .

Evaluation yields

∆̂z
γ′

(x, y) = x− iyγ′ +
[
a− ibγ′ −

(
x− iyγ′

)]
= x− i

(
γ′ + y

)
+
{
a− i

(
γ′ + b

)
−
[
x− i

(
γ′ + y

)]}
=
(
x+ a− x

)
+ i
(
y − b− y

)
− iγ′

= ∆x− i
(
γ′ + ∆y

)
.

Definition 2.4.9
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The infinite continuation of ∆̂z
γ′

to ∆̂z
−

is

∆̂z
+

(x, y) ≡ lim
γ′→∞̂

∆̂z
γ′

(x, y) .

Remarks 2.4.10

If we transform the modified variation directly with the y±(y) conversion functions of the Ĉ
representation then we will get an undefined expression. For this reason, the infinite contin-
uation is defined as the limit of the finite behavior rather than the infinite behavior of the
transformation law for the modified variation.

Theorem 2.4.11

The infinite continuation of the transformation of the modified variation is undefined.

Proof:

Consider the conversion functions

x(x, y+) = x , and y(x, y+) = ∞̂ − y+ .

The transformation law for the modified variation is

∆̂z
+

(x, y) = z+[x(x, y), y+(x, y)] +
(
x(a, b) + iy+(a, b)− z+[x(x, y), y+(x, y)]

)
= x+ iy +

[
x(a, b) + iy+(a, b)−

(
x+ iy

)]
= x+ i

(
∞̂ − y

)
+
{
a+ i

(
∞̂ − b

)
−
[
x+ i

(
∞̂ − y

)]}
.

This expression is defined by the brackets but we have to remove the brackets to rearrange
for the transformed variation. Consider

∆̂z
+

(x, y) = x+ i ∞̂ − iy + a+ i ∞̂ − ib− x− i ∞̂+ iy

= ∆x+ i∆y + i ∞̂+ i ∞̂ − i ∞̂ .
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By Remarks 1.3.15, this expression is undefined. We can also obtain a contradiction directly
from the definition of the variation. Consider two equivalent expressions such that

x+
(
h− x

)
=
(
x+ h

)
− x

(
∞̂ − x

)
+
[(
∞̂ − h

)
−
(
∞̂ − x

)]
=
[(
∞̂ − x

)
+
(
∞̂ − h

)]
−
(
∞̂ − x

)
(
∞̂ − x

)
+
(
x− h

)
=
[
∞̂ −

(
x+ h

)]
−
(
∞̂ − x

)
(
∞̂ − h

)
= −h

Remarks 2.4.12

Although ∆z1(x2, y2) and ∆̂z1(x2, y2) are not always identically equal, there are cases in
which they do produce the same derivatives. We will show cases in which the derivatives

computed from each variation agree and disagree. Then we will show that ∆̂z1 is always
valid for the case of z1 ∈ Ĉ.

Definition 2.4.13

In the case of Ĉ representations, the rule for taking the derivative with the modified variation
is to compute the derivative with γ and then let γ → ∞̂ once the expression is simplified.
Division by γ shall always be avoided through L’Hôpital’s rule.

Theorem 2.4.14

The modified variation, as defined, always produces the correct derivative for transforma-
tions between the Cartesian and Ĉ representations of C.

Proof:

Proof follows from Example 2.4.15, Example 2.4.16, Example 2.4.17, Example 3.2.6, and
Example 3.2.7.

Example 2.4.15

In this example we will compute the derivative of f(z) = z for the case of
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d

dz+
f(z) = lim

∆x→0
∆y+→0

f(z + ∆̂z)− f(z)

∆z
,

we have

z(x, y) = x+ iy ,

with two conversion functions

x(x, yγ) = x , and y(x, yγ) = γ − yγ .

(The conversion functions use γ instead of ∞̂ because we will make the substitution only
after we have evaluated the definition of the derivative.) The transformation law for the
modified variation is

∆̂z(x, yγ) = z[x(x, yγ), y(x, yγ)] +
(
x(a, b) + iy(a, b)− z[x(x, y), yγ(x, y)]

)
= x+ iy +

[
x(a, b) + iy(a, b)−

(
x+ iy

)]
= ∆x− i∆y + iγ .

Evaluation yields

d

dzγ
z = lim

∆x→0
∆yγ→0

f(x+ iy + ∆̂z)− f(x+ iy)

∆̂z

= lim
∆x→0
∆y→0

f(x+ i
(
γ − yγ

)
+ ∆x− i∆y + iγ)− f(x+ i

(
γ − yγ

)
)

∆x− i∆y + iγ

= lim
∆x→0

x+ i
(
γ − yγ

)
+ ∆x+ iγ − x− i

(
γ − yγ

)
∆x+ iγ
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Although γ is taken as a finite number, the rule is to avoid division by γ through application
of L’Hôpital’s rule. Since γ appears in numerator and the denominator, and since L’Hôpital’s
rule is typically used for limits of the form ∞/∞, we are well motivated to use this rule in
the derivative for the modified variation as if γ was an infinite number. L’Hôpital’s rule
yields

d

dzγ
z
∗
= lim

∆x→0
1 = 1 .

This is the correct answer but this example was trivial.

Example 2.4.16

In this example we will compute the derivative of f(z) = z2. For the case of

d

dz
f(z+) = lim

∆x→0
∆y→0

f(z+ + ∆̂z
+

)− f(z+)

∆̂z
+

,

we have

zγ(x, yγ) = x+ iyγ ,

with two conversion functions

x(x, y) = x , and yγ(x, y) = γ − y .

The transformation law for the modified variation is

∆̂z
γ
(x, y) = ∆x− i∆y + iγ

Evaluation yields

d

dz

(
zγ
)2

= lim
∆x→0
∆y→0

f(x+ iyγ + ∆̂z
γ
)− f(x+ iyγ)

∆̂z
γ
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= lim
∆x→0
∆y→0

f(x+ i
(
γ − y

)
+ ∆x− i∆y + iγ)− f(x+ i

(
γ − y

)
)

∆x− i∆y + iγ

= lim
∆y→0

[
x+ i

(
γ − y

)
− i∆y + iγ

]2 − [x+ i
(
γ − y

)]2
−i∆y + iγ

∗
= lim

∆y→0

−2i
[
x+ i

(
γ − y

)
− i∆y + iγ

]
−i

= 2
[
x+ i

(
γ − y

)
+ iγ

]
= 2
[
x+ i

(
2γ − y

)]
.

Having evaluated the definition of the derivative, we let γ → ∞̂ so that

d

dz

(
z+
)2

= 2
[
x+ i

(
2∞̂ − y

)]
= 2
[
x+ i

(
∞̂ − y

)]
= 2
[
x+ iy+

]2
= 2z+ .

This is the correct derivative.

Example 2.4.17

In this example we will compute the derivative of f(z) = z2 for the case of

d

dz
f(z+) = lim

∆x→0
∆y→0

f(z+ + ∆̂z
+

)− f(z+)

∆̂z
+

,

we have

zγ(x, yγ) = x+ iyγ ,

with two conversion functions
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x(x, y) = x , and yγ(x, y) = γ − y .

The transformation law for the modified variation is

∆̂z
γ
(x, y) = ∆x− i∆y + iγ .

Evaluation yields

d

dz

(
zγ
)3

= lim
∆x→0
∆y→0

f(x+ iyγ + ∆̂z
γ
)− f(x+ iyγ)

∆̂z
γ

= lim
∆x→0

(
x+ iyγ + ∆x+ iγ

)3 −
(
x+ iyγ

)3

∆x+ iγ

∗
= lim

∆x→0
3
[
x+ i

(
γ − y

)
+ ∆x+ iγ

]2
= 3
[
x+ i

(
γ − y

)
+ iγ

]2
= 3
[
x+ i

(
γ − y

)
]2 + 2ixγ − 3γ2 + 2γy

= 3
(
zγ
)2

+ 2ixγ − 3γ2 + 2γy .

Having evaluated the definition of the derivative, we let γ → ∞̂ so that

d

dz

(
z+
)3

= 3
(
zγ
)2

+ i ∞̂ − ∞̂2 + ∞̂

= 3
[
x2 + 2ix

(
∞̂ − y

)
−
(
∞̂2 − 2y∞̂+ y2

)]
+ i ∞̂ − ∞̂2 + ∞̂ .

This expression is well defined because the three infinities at end are distinct. Continued
evaluation yields
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d

dz

(
z+
)3

= 3

{
x2 + 2ix

[(
∞̂ − y

)
+ ∞̂

]
+

[(
−∞̂2 − y2

2

)
− ∞̂2

]
+ 2y

[(
∞̂ − y2

2

)
+ ∞̂

]}

= 3

{
x2 + 2ix

(
∞̂ − y

)
+

(
−∞̂2 − y2

2

)
+ 2y

(
∞̂ − y

4

)}

= 3
[
x2 + 2ix

(
∞̂ − y

)
+
(
−∞̂2 + 2y∞̂ − y2

) ]
= 3
(
z+
)2

.

This is the correct derivative. Notice that we have used the composition law defined (Defi-
nition 1.3.17) such that

(
− ∞̂2 − y2

)
− ∞̂2 = −∞̂2 − y2 .

3 Proof of limits of sine and cosine at infinity

3.1 Refutation of proof of nonexistence of limits at infinity

Definition 3.1.1

We say that the limit of a sequence exists if and only if all of its subsequences converge to
the same value.

Theorem 3.1.2

It is impossible to compute the limits

lim
x→∞

f(x) = lim
x→∞

sin(x) , and lim
x→∞

f(x) = lim
x→∞

cos(x) .

Proof (Refuted):

The definition of the limit requires that for a limit

lim
x→∞

f(x) = l ,
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to exist, the function f must converge to l in all of its subsequences. For proof by
contradiction, consider two subsequences of x

xn = 2nπ +
π

2
, and xm = 2mπ.

For any n,m we have

sin(xn) = 1 , and sin(xm) = 0 .

Therefore, it is impossible for all subsequences of x to converge to some constant l.

Refutation:

The convergence of the sequences are determined by the final n points, not the first n
points. Since the points in xn and xm are evenly spaced by 2π and the sequences both
terminate at infinity, we can write the final n points of each sequence as

x∞−n = ∞̂ − 2nπ , and x∞−m = ∞̂ − 2mπ .

Since ∞̂ − n 6= ∞̂, all of these points are distinct. It is obvious that both sequences
converge to the same value.

Remarks 3.1.3

Expressions like

f(xn) = sin(∞̂ − 2nπ) ,

can be evaluated easily with the difference formulae once we get values for sin(∞̂) and

cos(∞̂). Note the property of R̂ that for any a, b ∈ R

∞̂ −
(
b+ a) > 0 ⇐⇒ ∞̂− b > a .

This tells us that every R̂ number of the form ∞̂ − b is greater than every R number and

that every R̂ number of the form −∞̂ + b is less than every R number. In general, we say
that if a number is greater than every real number then it is equal to infinity but Theorem
1.5.2 states that
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0 < ∞̂ − b <∞ .

Therefore, make a definition that if x is larger than every b ∈ R and is less than infinity then

x = ∞̂ − ε .

Since all numbers of the form ∞̂ − 2nπ can be expressed as ∞̂ − ε we may reexamine our
sequences. With these definitions we have

sin(xn) = sin(∞̂ − ε) and sin(xm) = sin(∞̂ − ε) .

Therefore, the two sequences do converge to the same value. We have refuted the proof by
examining the final n points of xn and xm whereas the refuted proof has only examined the
first n points which have no bearing on the convergence of the final n points. Since the
absorptive property of ∞ is such that

∞− ε =∞ ,

we should use the difference formula to write

sin(∞− ε) = sin(∞) cos(ε)− cos(∞) sin(ε) .

This cancels the absorption of ∞. For any 0 < ε < 1

sin(∞) cos(ε)− cos(∞) sin(ε) 6= sin(∞) .

Since sine and cosine are generally functions R → R, we need a way to express R̂ numbers
as R numbers. With a caveat about absorption, ∞− ε satisfies the main requirement

0 < ∞̂ − ε <∞ .

We might say that “∞−ε” is a compound label referring to real numbers in the neighborhood
of infinity.
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Corollary 3.1.4

We have shown that Ĉ is the complement of C on S2 in the limit where ±∞̂,±i ∞̂ → ∞
(Corollary 1.4.16.) Now we have reason to consider another complementary arrangement on
S2 and we will consider a great circle S1 to simplify the statements. Since there are exactly

as many R̂ numbers of the form ∞̂+b as there are non-zero R numbers, and every R̂ number
of this form is greater than every R number, we should set the infinity that R tends toward
on the equator of the sphere when 0̂ and ∞̂ are the two poles. Since there are as many points
in the interval [∞− ε,∞] as there are in [0,∞− ε], one would favor the representation in
which the area around the pole at infinity is stretched over an entire hemisphere because
the density of numbers on the surface of the sphere is uniform when R tends toward a value

on the equator. R̂ numbers of the form ∞̂ − b will also tend toward that same value for
increasing b ∈ R. When R tends toward infinity at the opposite pole from its origin, then

every R̂ number is squeezed to one side of the sphere. Regarding the refutation of Theorem

3.1.2, all the points in the R̂ hemisphere can take the same value∞− ε because the equator
is constrained to be adjacent to the pole. We might call the equatorial infinity that R and

R̂ tend toward ∞− ε to distinguish it from the polar infinity ∞̂, or we might even use the
label ∞. While that would bear a lot of further analysis, there are some immediate features
of interest in expanding the neighborhood of polar infinity to cover an entire hemisphere. By
the symmetry of the sphere, and by the symmetry of there being exactly as many positive

R̂ numbers less than infinity as there are R numbers greater than zero, we can deduce that
the limits of sine and cosine at ∞̂ should be the same as what they are at 0̂: the sphere
has mirror symmetry about it equator. Furthermore, since ε is vanishingly small, equatorial
infinity is separated from polar infinity by a vanishingly small distance. We may deduce the
behavior at the equator from the behavior at the pole because there is a representation in
which equatorial infinity is adjacent to polar infinity (Corollary 1.4.16.) In the next section,
we will use a totally different method to derive the behavior of sine and cosine at infinity
but we will find that it is exactly like the behavior at zero.

3.2 Proof of limits of sine and cosine at infinity

Theorem 3.2.1

The values of sine and cosine at infinity are

sin(∞) = 0 , and cos(∞) = 1 .

Proof:

We have proven in Theorem 2.2.3 that

d

dz1

ez2 = ez2 .
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For f(z) = ez in the case of

d

dz
f(z+) = lim

∆x→0
∆y→0

f(z+ + ∆̂z
+

)− f(z+)

∆̂z
+

,

we have

z+(x, y+) = x+ iy+ ,

with two conversion functions

x(x, y) = x , and y+(x, y) = ∞̂ − y .

The transformation law for the modified variation is

∆̂z
+

(x, y) = ∆x− i∆y + i ∞̂ .

Evaluation yields

d

dz
ez

+

= lim
∆x→0
∆y→0

f(z+ + ∆̂z
+

)− f(z+)

∆̂z
+

= ex+iy+ lim
∆x→0
∆y→0

e∆x−i∆y+i ∞̂ − 1

∆x− i∆y + i ∞̂

= ex+iy+ lim
∆x→0

e∆x+i ∞̂ − 1

∆x+ i ∞̂

∗
= ex+iy+ lim

∆x→0
e∆x+i ∞̂ = ex+iy+ei ∞̂ .

The exponential is an eigenfunction of the derivative with eigenvalue 1 so
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1 = ei ∞̂ = cos(∞̂) + i sin(∞̂) .

Equating the real and imaginary parts gives

sin(∞̂) = 0 , and cos(∞̂) = 1 .

Theorem is proven with

sin(∞̂) = sin(∞) , and cos(∞̂) = cos(∞) .

Theorem 3.2.2

The limits of sine and cosine at infinity are

lim
x→∞

sin(x) = 0 , and lim
x→∞

cos(x) = 1 .

Proof:

A function has a limit l if and only if the function converges to l in any subsequence. We
have shown in the refutation of of Theorem 3.1.2 that the final n points of any sequence
sin(xn) have the form sin(∞− ε). In the limit ε→ 0 we find that for any xn ∈ R

lim
n→∞

sin(xn) = sin(∞) , and lim
n→∞

cos(xn) = cos(∞) .

Theorem is proven with sin(∞) = 0, cos(∞) = 1, and xn → x.

Theorem 3.2.3

Sine and cosine are continuous at infinity.

Proof:

We say that a function is continuous at a point if

lim
x→x0

f(x) = f(x0) .
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Sine and cosine are such that

lim
x→∞

sin(x) = sin(∞) , and lim
x→∞

cos(x) = cos(∞) .

Both functions are continuous at infinity.

Theorem 3.2.4

The values of sine and cosine at∞ preserve the odd- and evenness of sine and cosine respec-
tively.

Proof:

In Example 2.4.8 we found ∆̂z
γ′

(x, y) which is continued to ∆̂z
−

(x, y) as

∆̂z
−

(x, y) = ∆x− i
(
∞̂+ ∆y

)
.

We can plug this into

d

dz
f(z−) = lim

∆x→0
∆y→0

f(z− + ∆̂z
−

)− f(z−)

∆̂z
−

,

to obtain

d

dz
ez
−

= lim
∆x→0
∆y→0

f(z− + ∆̂z
−

)− f(z−)

∆̂z
−

= ex−iy
−

lim
∆y→0

e−i∆y−i ∞̂ − 1

− i∆y − i ∞̂

∗
= ex−iy

−
lim

∆x→0
e−i∆y−i ∞̂ = ex−iy

−
e−i ∞̂ .

It follows that

63



cos(−∞̂) = 1 , and sin(−∞̂) = 0 .

Therefore,

cos(−∞̂) = cos(∞̂) , and sin(−∞̂) = − sin(∞̂) .

Sine is an odd function and cosine is an even function.

Theorem 3.2.5

Sine and cosine satisfy the double angle identities at infinity.

Proof:

The relevant identities are

sin(2x) = 2 sin(x) cos(x) , and cos(2x) = 1− sin2(x) .

These identities are satisfied trivially for x = ∞̂.

Example 3.2.6

To further confirm Theorem 2.4.14, namely that modified variation always produces the
correct derivative and that, therefore, the derivation of limits in this paper is completely
sound, we will now use the modified variation to compute a derivative which requires an
application of the chain rule. We will consider f(z)=3ze2z in the case of

d

dz
f(z+) = lim

∆x→0
∆y→0

f(z+ + ∆̂z
+

)− f(z+)

∆z+
.

We have

zγ(x, yγ) = x+ iyγ ,
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with two conversion functions

x(x, y) = x , and yγ(x, y) = γ − y .

The transformation law for the modified variation is

∆̂z
γ
(x, y) = ∆x− i∆y + iγ .

Evaluation yields

d

dz
3zγe2zγ = lim

∆x→0
∆y→0

f(x+ iyγ + ∆̂z
γ
)− f(x+ iyγ)

∆̂z
γ

= lim
∆x→0

3
(
zγ + ∆x+ iγ

)
e2zγ+2∆x+2iγ − 3

(
zγ
)
e2zγ

∆x+ iγ

∗
= lim

∆x→0

[
3 + 6

(
zγ + ∆x+ iγ

)]
e2zγ+2∆x+2iγ

=
[
3 + 6

(
zγ + iγ

)]
e2zγ+2iγ .

We obtain the expression for z+ by letting γ → ∞̂. This gives

d

dz
3z+e2z+ =

[
3 + 6

(
z+ + i∞̂

)]
e2z++2i ∞̂

=
{

3 + 6
[
x+

(
i ∞̂ − iy

)
+ i∞̂

]}
e2z+e2i ∞̂

=
{

3 + 6
[
x+

(
i ∞̂ − iy

)]}
e2z+ =

(
3 + 6z+

)
e2z+ .

This is the correct derivative.

Example 3.2.7
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To continue with the proof of Theorem 2.4.14, we will now use the modified variation to
compute a derivative which requires an application of the chain rule. We will consider
f(z)=7z2 tan(6z) in the

d

dz
f(z+) = lim

∆x→0
∆y→0

f(z+ + ∆̂z
+

)− f(z+)

∆z+
,

variant of the representational derivative. Evaluation yields

d

dz
7
(
zγ
)2

tan(6zγ) = lim
∆x→0
∆y→0

f(x+ iyγ + ∆̂z
γ
)− f(x+ iyγ)

∆̂z
γ

= lim
∆x→0

7
(
zγ + ∆x+ iγ

)2
tan(6zγ + 6∆x+ 6iγ)− 7

(
zγ
)2

tan(6zγ)

∆x+ iγ

∗
= lim

∆x→0
14
(
zγ + ∆x+ iγ

)
tan(6zγ + 6∆x+ 6iγ) + ...

...+ 7
(
zγ + ∆x+ iγ

)2
6 sec(12zγ + 12∆x+ 12iγ)

= 14
(
zγ + iγ

)
tan(6zγ + 6iγ) + 7

(
zγ + iγ

)2
6 sec(12zγ + 12iγ)

We obtain the expression for z+ by letting γ → ∞̂. This gives

d

dz
7
(
z+
)2

tan(6z+) = 14
(
z+ + i ∞̂

)
tan(6z+ + 6i ∞̂) + 42

(
z+ + i ∞̂

)2
sec(12z+ + 12i ∞̂)

= 14z+ tan(6z+) + 42
(
z+
)2

sec(12z+) .

This is the correct derivative.

Remarks 3.2.8

We have introduced a rule (Definition 2.4.13) such that the modified variation in the deriva-
tive requires an application of L’Hôpital’s where it is not independently motivated. To avoid
this, consider the definition
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d

dz−
f(z) = lim

∆x→0
∆y−→0

f(z + ∆z)− f(z)

∆z
.

We have written the variation of y− ∈ R̂ as an R number when there is an argument to be

made that the variation of a R̂ number should not have the same form as the variation of an
R number. In the interpretation where R̂ numbers measure magnitude relative to the origin
at infinity, the limit of small variation is

∆y− → ∞̂+ 0 .

Note that the composition laws of R̂ + R and R̂ + ∞̂ give(
∞̂+ b

)
+ 0 =

(
∞̂+ b

)
+
(
∞̂+ 0

)
.

Evaluating for f(z) = ez with the transformation for the canonical variation (Definition
2.3.8) yields

d

dz−
ez = ez lim

∆x→0
∆y−→∞̂

e∆x+i∆y− − 1

∆x+ i∆y−

= ez lim
∆y−→∞̂

ei∆y
− − 1

i∆y+

= ez
ei ∞̂ − 1

i ∞̂
= ez

i ∞̂+

(
i ∞̂
)2

2
+

(
i ∞̂
)3

3!
+ ...

i ∞̂

 .

By taking the limit, we have obtained an expression of the indeterminate form ∞/∞ which
is an ordinary context for L’Hôpital’s rule. Application of the rule yields

ez lim
∆y−→∞̂

ei∆y
− − 1

i∆y+

∗
= −iez lim

∆y−→∞̂
iei∆y

−
= ezei ∞̂ .

The limits of sine and cosine at infinity may be derived from this expression too.
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