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ABSTRACT

We develop a representation of complex numbers separate from the Cartesian and polar rep-
resentations and define a representing functional for converting between representations. We
define the derivative of a function of a complex variable with respect to each representation
and then we examine the variation within the definition of the derivative. After studying the
transformation law for the variation between representations of complex numbers, we show
that the new representation has special properties which allow for a consistent modification
to the transformation law for the variation which preserves the definition of the derivative.
We refute a common proof that the limits of sine and cosine at infinity cannot exist. Then
we use the newly defined modified variation in the definition of the derivative to compute
the limits of sine and cosine at infinity.
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1 Development of C

1.1 Properties of real numbers R
Theorem 1.1.1

All functions of the form

f R — R, with flxy=mz+b , mbeR |, m#0 ,

are one-to-one.

Proof:
We say f is a one-to-one function when

f(ﬂfl) = f(l’2) <~ Tl = Ty .

Evaluation of f(x) yields

mxry+b=mxy+0b <— T =Ty .

All such functions f are one-to-one.

1.2 Properties of extended real numbers R
Definition 1.2.1

The extended real numbers are

R = RU{+oo} .

Definition 1.2.2

The additive absorptive properties of 400 are such that



V beR 3 4+o00€R, such that +oo+b==00 .

Definition 1.2.3

The multiplicative absorptive properties of oo are such that

V beR , b>0 3 +oo€eR , such that +ooxb==00 .

Definition 1.2.4

The oo symbol is such that for z, > 0

r, € R ¢ lim z, = diverges — T, €R : limz, =00 |,
n—00 n—00

for n € N. (All further instances of n are implicitly n € N.)

Theorem 1.2.5

There is no additive inverse defined for oco.

Proof:

Consider two R sequences

Ty, =2n and Y =1
such that
lim z, =00 , and lim y, =00 .
n—00 n—00

It is an identity of limits that

lim (:L‘n — yn) = lim z, — lim ¥, .
n—oo n—roo n—0o0



We obtain a contradiction with

lim (xn — yn) = lim y, =
n—oo n—,oo

lim x, — lim y, =00 —00 =0 .
n—0o0 n—oo

Therefore,

0o — 0o = undefined .

Definition 1.2.6

oo does not have a multiplicative inverse so

e undefined .
00

Remarks 1.2.7

Even while co does not have the inverse composition properties of the real numbers, R has
the useful property that one may use numbers on both sides of divergent limits. oo is a
special number that R was conceived to accommodate.

Theorem 1.2.8

Not all functions of the form

f: R = R, with f(xy=mz+b , mbeR , m#0 ,

are one-to-one.

Proof:

To show a contradiction with the definition of a one-to-one function, consider m = oo.
By the absorptive properties of co



flz1) =00x1 +b=00 |, and flzg) =00x9 +b=00 |,

but

00 = 00 S T, =To .

We might show the same contradiction with b = oo. Therefore, functions of this type are
not always one-to-one.

Definition 1.2.9

For any n > 1 we have

1.3 Properties of modified extended real numbers R
Definition 1.3.1

Modified extended real numbers are

R = {+0+b:beR,b£0} .

They have the properties that

V zeR 3 beR , b#0 , such that r=2400+b ,
and
r, € R : lim z, = diverges — r, e RU{ac} : limz,=020 .
n—oo n—ro0

Remarks 1.3.2




The main difference between oo and o0 is that we suppress the additive absorptive property
of oo for 0. In multiplication, we see that o0 does not absorb —1 and when we make the
extension to complex numbers it will not absorb =.

Theorem 1.3.3

For any = € R

rT=a00+b = a,beR |, a=+1 , b#0 .

Proof:

Proof follows from the definition of R.

Remarks 1.3.4

Numbers of the form

rT=ao0+b |, with a#+1 , b#0 ,

can be recast as R numbers by applying the multiplicative absorptive properties of o0. To
the contrary, numbers of the form

T=a0+b |, with b=0 ,
cannot be cast as R numbers.
Definition 1.3.5
The operations 50 — 50 and 50/00 are undefined.
Definition 1.3.6
The additive absorptive properties of +60 are such that
V beR , b#0 3 +>0eR , such that +00+b#+0 .



Expressions of the form o0 + b are defined by self-identity.

Definition 1.3.7

The multiplicative absorptive properties of +60 are such that

V beR , b>0 3 +0€eR , such that +00 X b=+0 .

Definition 1.3.8

R numbers are such that

0+a=0+b = a=">b .

Definition 1.3.9

The additive composition law for R+Ris

(£ +a) + b=+ + (a+b)

Definition 1.3.10

The additive composition laws for R + 30 are
(£0 +4a) £50 = (£ + )

(:|:65+a)4265:a )

Definition 1.3.11

The additive composition laws for R +R are



(£0+a) + (20 +b) =+250+ (a+b) = £50 + (a + b)

(o+a)+(—0+b)=a+b ,

where

200 =00 ,

follows from the absorptive properties of 50 (Definition 1.3.7.)

Theorem 1.3.12

The additive composition laws for R do not require an additive inverse for o0.

Proof:
Consider the additive composition of two R numbers

IL‘1:65+b1 s and C(,’inaa"—bQ .

The case of by = by = 0 is ruled out by the definition of R.

Theorem 1.3.13

All R numbers have an additive inverse.

Proof
Consider the case of b = —a in the identity

(35+a)+(—-0+b)=a+b .
Then

V r=o0+a 3 2/=-—-a , such that r+2 =0 .



This is the definition of the additive inverse.

Remarks 1.3.14

We can extract a multiplicative composition law from the absorptive properties of o0

e~

bxoo=00 ,

but we cannot extract the law for division because multiplying both sides by 50~! yields the
undefined expression 50 x 00~ !. If there was a multiplicative inverse for 50 then we could
use the rule for division to write

00+ b

0,@)

X 00 =0bx0o0 — X +b=020 .

This contradicts the additive property of o0 that

X +b#0

so 560/00 must be undefined.

Remarks 1.3.15

Operations of the form R 4 55 — 50 are undefined because 53 — 0 is not defined. Add 33 to
both sides of

(C+a)—x=a ,

to obtain

(+4a) -X+X =0+ .

By adding the quantity in parentheses to either of +o0 first and then adding Fo0, we may
obtain two different values



[(0+a) -]+ =0+ , and (X +a)+X] - =a

To the contrary of R +30 — 9, expressions like (]1@—#65) — 00 and (I@ —39) + 0 are perfectly
well defined because the order of operations is specified by the bracketing.

Definition 1.3.16

Infinity written as o0 does not absorb infinity. In other words, for any n > 1

AT

Definition 1.3.17

All composition laws written for 0 apply for oo”. For example,
(0* +b) =% =b

(c0? +b) —0 #b

Theorem 1.3.18

The additive inverse property of R is consistent with the definition of the limit.

Proof:
Due to the absorptive properties of co, limits in R can have the form

lm z, =co=00+a |, with Tp,a € R
n—oo

10



but there will never be a limit in R of the form

lim z, =0 =o0+a , because X+ a#00 .
n—oo

(This follows from Definition 1.3.6.) Therefore, one is not able to use the additive inverse
properties of R to obtain a contradiction of the type used to prove Theorem 1.2.5.

Definition 1.3.19

R numbers are such that

T, €R : lim z, =00 — z, €R : lim z, = diverges |,
n—oo n—o0

because o0 ¢ R.

Remarks 1.3.20

If we wanted to infinitely continue R — R in the fashion of R — R such that

R : lim z, = diverges — R : limax,=00 ,

then we would mirror the extension of

R — RU{t+oo} , with {£oo+b:beRb#A0} — {£o0+b:beR}

where the case of b = 0 defines a special number 50 without an additive inverse.

Definition 1.3.21

R is defined such that for any a,b >0

(5 —a) > (50— b) — a<b .

11



Remarks 1.3.22

A good way to visualize modified extended real numbers is to write

relR = r = 6—|—x,

where  measures distance from the origin 0. We may transfinitely extend the real number
line to include the points at infinity and an interval beyond such that 4006 are the origins of

A~

R. Then we have

~

reR — r=400+b ,

where b measures distance from another origin o0 or —o0 located infinitely far away from
the Cartesian origin 0. In particular, this makes a lot of sense for the additive identity
(Definition 1.3.11)

(50+a)+ (5+1b) =50+ (a+b)

We have mentioned functions of the form

y=mzr+0b ,

because the function which shifts the origin

f b — +b,

is a case of the same.

Theorem 1.3.23

All functions of the form

f: R = H/é, with flz)=mz+b m,bERUI@, m#0

are one-to-one.

12



Proof:

Consider m = o0 + a; and b = o0 + ay. By the additive and multiplicative properties of
oo we find that

flz1) = (X4 a1)z1 + (30 + a2) = (0 + ar121) + (0 + az) =0 + (a171 + as)
f((lfg) = (65 + al)l’g -+ (65 + CLQ) = (65 -+ (111’2) —+ (68 + CLQ) = 65 + (Gll’g —+ CLQ)

By the non-absorptive additive properties of o0

65+ (alxl + ag) =00 + (all’g + CLQ) < Tl = Ty .

The case of m,b € R was treated in Theorem 1.1.1, so we have shown that all such func-
tions are one-to-one.

1.4 Properties of modified extended complex numbers C
Definition 1.4.1

Complex numbers are

C = {z+iwy:zeRyecR} .

Definition 1.4.2

Extended complex numbers are

C = {z+iy:zeR,ycR} , where 100 # 00 .

Definition 1.4.3

Modified extended complex numbers are such that

C = {(X+iX+2,-X+ix5+2Z:ZeC,Im(Z)+0,Re(Z2) #0} .

13



Definition 1.4.4

Infinitely continued modified extended complex numbers C are such that

= Cu{Im(z) = 0,Re(z) =0} .

ol

Definition 1.4.5

C is such that {0, £iod} are four distinct symbols, all of which are compound symbols
when we write “+00.”

Definition 1.4.6

The additive composition laws for C + C are
(0+ixx+Z)+2=0++i0+ (Z+2)

(—-X+ixo+2)+2=-X0++ixx+ (Z + 2)

Definition 1.4.7

The additive composition laws for C 4 50 and C =+ i 59 are
(0+ixx+2Z)+X0=0+ix0+~Z
(0+tixx+Z)FX=+ixo+Z

(0+tixx+2Z)+ico=0+ix0+Z

(X+tix+2)Fic=x+7 .

Remarks 1.4.8

The additive properties of C + C are implicit in the other composition laws.

14



Definition 1.4.9

The multiplicative properties of 400 are
—1 x +£00 = Foo
i X 00 = £i0
—4 X 300 = Fi 00

(1+4) x £50 = undefined |,

and for any non-zero b € R

b x 00 = sign(b) x 00 .

Definition 1.4.10

The multiplicative properties of i o0 follow from Definition 1.4.9.

Definition 1.4.11

The absorptive properties of 00 are
V zeR , 2>0 3 eR , such that z(9) = ()

V ze€R , 2<0 3 DeER |, such that 2(x0) = (— )

Definition 1.4.12

The absorptive properties of 4700 are

V zeR , >0, i5o € R , such that x(z&?):(z&?)
V 2€R , 2<0 , ioeR | such that 2(ix0) = (—i0)

15



Theorem 1.4.13

Infinity o0 does not obey the distributive property of multiplication.

Proof:
If o0 had a distributive multiplicative property then

(1+i)5o=00+i .

This contradicts the the multiplicative properties of 50 (Definition 1.4.9).

Definition 1.4.14

For two modified extended complex numbers

21:66—}-265—}-Z1 s and 22:65—}-268—}-22 s

we have

21 = 29 <~ J1=2y .

Definition 1.4.15

Any sequence of the form

2 €C | 2y =2, + 1y, , with Tn,Yn €ER | x5y, >0

is such that

lim x, = diverges
n—oo

z, €C , — Z, €

lim y, = diverges
n— o0

o)

lim z, =00 +i00 .
n—oo

Corollary 1.4.16
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C is the complement of C on the Riemann sphere S?.

Proof
A is the complement of B on S? if

S = AUB .

The Riemann sphere is obtained from C by adding a point for infinity to both ends of
the real and imaginary axes and then imposing, in addition to the preexisting properties,
new conditions

+oo =00 , and +ico =00 .

It follows that

S* = {C: oo — 0o, +ico = oo} .

Imposing these conditions on C (Definition 1.4.3) gives

C — {oo} .

Since it is the definition of the Riemann sphere that

S = Cu{co} ,

we can use the definition of the complement to write

S? = CU{C:+3 — 00, +i50 — oo} .

A

1.5 Properties of modified complex numbers C
Definition 1.5.1

17



Modified complex numbers C shall be such that

x+iy* for Im(z) >0
zeC = z=Qx for Im(z) =0
T — 1y for Im(z) <0

where
v*y) : R - R,
with
vy y)=-y , and y (y)=x+y .
More broadly
cC = RU{z+iyT:z € R,y* G]l/é} )

Theorem 1.5.2

C numbers are such that

A

2€C , z=a+iy* = 0<y* <oo .

Proof:

Theorem is proven with

y* are such that

v R — R, and y"=(5Fy) , yeR .

18



By the definition of]l/é, yT =50 and y* = 0 are not allowed. For any a,b € R with a,b > 0
we have (Definition 1.3.21)

(50 —a) > (0 —b) — a<b

wherein a,b > 0 follows from the restriction of the domain of y*(y) in z = z + iy*
(Definition 1.5.1). This shows that y* increases as |y| decreases. Therefore,

supy™ = y*(inf |y|) .

y € R gives

inf |y| =0 = supyT =0 —-0=020 .

y* < 0 follows because 30 & R. To show that y* is always greater than zero, consider
that

V beR , ao>b — o—b>0 .

Theorem 1.5.3

The y*(y) functions which generate C are analytic.

Proof:

It suffices to show that the functions satisfy the Cauchy—Riemann equations

ou_on R TR
or Oy ' oy Oz
For
z=ztiyt =xti(xxty) ,
we have

u=x and v=+(¢ty)

19



Analyticity follows by evaluation.

Remarks 1.5.4

When we use

ze€C — z=re? | rHeR

where

r(z,y) = Va2 +y? and O(z,y) = tan~! (g) :

we do not need to define an entire new class of analysis with some variant of C’ to distinguish
it from

zeC = z=x+1y , r,yeR .

In @, we did not add the point at infinity to C but we did take away the points along the real
and imaginary axes of C because o0 — o0 is not defined. Therefore, a unique construction
requires a unique label. With regards to C, however, we have neither added the point at
infinity nor taken away any points so there is an argument to be made that

A

C = C.

2 Properties of C

2.1 Definition of a representation of complex numbers C
Definition 2.1.1

(z,y)) is the Cartesian representation of C in which

z2(z,y) =x +iy .

We say

20



(z,y) = z2(xy) =

Definition 2.1.2

T4y .

(z2,92)) is a representation of C if and only if (1, 1)) is a representation of C and there

exist two conversion functions

T2 = x2($17y1) ) and

whose domains are all of C.

Definition 2.1.3

For any function of a complex variable f(z)

f:C — C — f(z1)

Theorem 2.1.4

(r,0)) is a representation of C.

Proof:

Y2 = y2(3717311> )

(z1,0) = (z1,m)

(z,y)) is a representation of C and we have two conversion functions

r(z,y) = Va2 +y? | and

0(x,y) = tan™" <Q>

X

((r,0)) is a representation of C because all of C is in the domain of the conversion func-

tions.

Definition 2.1.5

If (x1,71)) and ((z2,y2)) are two representations of C then there exists a representing func-

tional of two conversion functions

21



(o) (T, 1)) o (21,01) = (22,92)

where z1 (22, y2), y1(x2, y2) are the two implicit conversion functions. The rule for construct-
ing the representing functional with the conversion functions x(xs, y2) and y; (z2,y2) is that

(z1,1) = 2(@1,1) — (z2,92) = z[21(22,92), y1(22, y2)]

Example 2.1.6

Here we use the representing functional

2oy (7, 9))] = (r,0))

to construct the polar representation of C from its Cartesian representation. The conversion
functions are

x(r,0) = rcos(f) and y(r,0) = rsin() .

The representing functional is

2oy (2, v)] = 2@ o) lx 4 iy] = rcos(f) + irsin(f) = re'? |

Therefore,

(r,0) = re? .

Example 2.1.7

Here we use the representing functional

A [(r0)] = (2,9) -

22



to construct the Cartesian representation of C from its polar representation. The conversion
functions are

r(z,y) = V> +y* and 0(x,y) = tan™!

SHESS

The representing functional is

_ meitanfl(y/z)
= /2?2 + y? cos (tzm_1 (g>> + i/ 2% + y? sin (tan_l <Q>>
x x

Y
| |G
= a2 +y? - + iy a? +y? Iz =z+iy .
(2) +1 (2) +1
X T

Therefore,

(z,y) == +iy .

Remarks 2.1.8

The polar representation requires incorporation of the number e so we should consider other
representations that include different numbers such as o0.

Definition 2.1.9

If we have a representation

(f(22),9(10)) = 2(w2,92) ,

then the rule for constructing

2(f(e2) g (1, 91)] = (f(22), 9(v2))

23



18

2(f@) g (L)) = 2(f(2) 9wy [f (1), 9(11)]

Example 2.1.10

To see that the rule for representations labeled with functions is consistent with the definition
of the representation, consider

flx)=z , and 9y) =y ,

so that

2(f(a2)0)) [(Z1, Y1)] = 2((f(22) 9wy [f (1), 9(31)]

To define the quantity in square brackets we need to know the form of z; = (x1,y1). Let
(x1,y1)) be the Cartesian representation so that

2(f(@2),9w) (@1, Y1)] = 2 @2) 9 [f (21) + 19(31))]
= f(z1(22,92)) +ig(y1(72,12))

= x1(z2,¥2) + i1 (72, 2) -

x1(x9, y2) and y; (z2, y2) are the conversion functions of the Cartesian representation (x1, y1))
such that

zi(z,m) = w1+ — 21(x2,2) = w1(v2,y2) + iy (w2, y2) -

Theorem 2.1.11

The representation of C corresponding to Cis

((:BQ’ {®7 :|:68 - yi})) = Z(x% {Oa yi}) 5

24



with Cartesian conversion functions

o0 —y*t for Im(z) >0
w(2,y") = a2, and y(z2,y7) =<0 for Im(z)=0

o +y” for Im(z) <0
Proof:

All of C is in the domain of these functions. C is piecewise defined so it suffices to show
that the pieces satisfy the definitions. For ((x,()) we have conversion functions
)

$($2,y = T2 , and y(x27y+) =0 )

such that

")

220 (2, )] = 2@y s (@y @ + 1] = x(@2,yT) +iy(ze,y") =25 .

Therefore,
(22,0) = o where T, = @
For ((x2,50 — y™)) we have
flx) ==, and gly) =0 -y .

Therefore,

Fa1(m2,92)) + gy (22, y2)) = 21(22, Y2) + (50 — y1(22, 2))

For z € C with Im(z) > 0, our conversion functions are

I($2,y+) =2 , and y(xz,y+) =0 -y

25



The representing functional of the conversion functions is
2wy ) (7, Y)] = 2@y s @y [T +19(y)]
= 'T(:L‘27 y+> + Z<65 - y($27 y+))
— i+ iR (% - )]
Since y* € R, the quantity in parentheses is not an R number and the quantity in square

brackets is not formatted for an additive composition 50 — R. Substitute y™ = o0 — ¥y so
that

Yzt (2, y)] = 22 + {60 — [0 — (B0~ y)] }

The quantity in square brackets obeys the additive composition laws for R + 30 so

Harzo—y) (2, Y)] = 22 + (50 — y)

=y +iy"

Therefore,

—

(22,00 —y™) = xa +iy™ .

The final case is ((x2, —00 — y~)). We have

flz)=2z, and g(y) =—-0—-y .

Therefore,

fla1(2,92)) +ig(y1 (22, ¥2)) = 21(22, 42) + i — 30 — Y1 (22, 2))

26



For z € C with Im(z) < 0, our conversion functions are

—

CU(ZL'Q,y_) =x2 , and y($27y_) - y_ — 00 .

The representing functional is
2wz —5—y) (T )] = 2(@aiz49-) [T +i9(y)]
= ZE($27 y+) - 2(65 + y(‘r27 y_))

== i[®+ (- )

Since y~ ¢ R, the quantity in parentheses is not an R number. The quantity in square
brackets is not formatted for an additive composition 50 — R. Substitute y~ = o0 + ¥y so
that

2(ea-m-y) (2, y)] = 22 — {50 + [(50 +y) — ] }

The quantity in square brackets obeys the additive composition laws for R+ so

Hawn,—5—y) (7, 9)] = 22 — (50 + )

=T9 — 1Y

Therefore,

(29, 00—y ) = a0 — iy~

We have proven that

xo + iyt for Im(z) >0
(22, {0, £ —y*}) = <y for Im(z) =0
To — iy~ for Im(z) <0

27



Example 2.1.12

In this example we show that the representing functional correctly recovers the Cartesian
representation from the C representation. The conversion functions are

ZU([E,y)ZCE ) and y+(ﬂf,y>:65—y .

and the representing functional is

We have shown that the representing functional takes the C representation and returns the
Cartesian representation.

Remarks 2.1.13

At this point, the reader hopefully is asking, “What is this convoluted notation for?” We in-
troduce the rigorous representation to quantify what we mean by phrases like “the Cartesian
representation of C,” or “the polar representation of C,” or even “the C representation of C.”
For instance, we might wish to state precisely that the conversion functions of the Cartesian
representation to the polar representation are analytic but the conversion functions of the
Cartesian representation to the C representation are one-to-one. Not only that, y*(z,y)
are analytic functions while z5(x,y) = Re(z(x,y)) is not a complex analytic function in any
representation of C.

Example 2.1.14

Consider a complex number

i =a+io0 .

28



expressed in the z™ piece of the C representation. This number can never appear in the
conversion from the Cartesian representation to the C representation due to the piecewise
definitions for Im(z) = 0. However, we might begin with a number in the C representation
and wish to express it in the Cartesian representation. If we plug z; directly into the repre-
senting functional then we will obtain an undefined expression. The representing functional
is

—

2w [(2,50 =y )] = 2yl + (50 — y7)]

= Z(ay)lo + (50 — 33)]

but we would have no way to evaluate the undefined expression. Since « is real, we can not
put it inside the parentheses to form and R number. Therefore, the representing functional
is not defined for y* = 55. However, if we require y= € R then we will never encounter the

—~

values y* = 0.

Corollary 2.1.15

As an illustration of the high significance of conversion functions, consider the Gaussian
integral
e 2
= / dre™
—0o0

This integral is analytically intractable in the Cartesian representation of C (except by
quadrature) but it can be solved easily in the polar representation. We write canonically

_72:/ dre™ x/ dxe_’“"Q:/ dx/ dye_(m2+y2) ,

and then insert the conversion function

r(z,y) = Va2 +y* .

We obtain the infinitesimal element of polar area from the conversion functions

x(r,0) = rcos(0) and x(r, ) = rcos(0)

29



via

dy
—ardT’—F%dQ .

ox ox dy
dx—gdr%—%dé’ , and dy = ==

Then

27 o
I? = / de / drre" = I(z) =7 .
0 0

2.2 Definition of the representational derivative d/dz;
Remarks 2.2.1

To prove the limits of sine and cosine at infinity, we will use the definition of the derivative.
First, we will compare the conventions for derivatives with respect to

z=x+1y and z=re? |

and then we will define derivatives with respect to

x+ iyt for Tm(z) >0
z=4qx for Im(z) =0
T =iy for Im(z) <0

We will use the definition of the representation to increase the specificity of the distinctions
that we make.

Definition 2.2.2

The forward derivative of a complex-valued function is

4oy = g FEHBD 1)

Az—0 Az ’ with AZ:Z—l—(h—Z) , heC, h—0.

Theorem 2.2.3
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The function f(z) = e* is an eigenfunction of the d/dz operator with unit eigenvalue.

Proof:

Using the definition of the derivative we find that

d : . 62+Az — e?

—e” = lim

dz Az—0 Az
Ay—0

e:c+iy+Aa:+iAy . eaﬁ-‘riy

= lim

Ar—0 Az + 1Ay

Y
ex+iy+iAy o €x+iy

= lim ,

Ay—0 1Ay
. Z'eac-i-iy-i-iAyJr
= lim

Ay—0 7
= 62:

(The = symbol denotes an application of L'Hopital’s rule.)

Remarks 2.2.4

The derivatives with respect to the polar and Cartesian representations are

d . \_ flz+Az) - f(2) d . _ . flz+Az) - f(z)
GO md GfO=gm T
AO—0 Ay—0
with

Azzz—l—(h—z) , heC , h—0 .

There is usually no distinguishing between the two distinct instances of d/dz. We will be
doing some tricks with these distinctions so it will be useful to distinguish the derivative
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with respect the each individual representation of complex numbers.

Definition 2.2.5

The representational derivative

d L [z Az) — f(2)

is such that the variables of the z; representation appear in the limit while the variables of
z appear in the limiting function. For instance, when C is a representation of C even while
(2,0), (z,£0 — y*)) are individually not, we have

d% 1= %%%8 e AAZi Sy for 2(z,y) = o +1iy
=1t o el for 2(r.0) = e
d;LJF f(zF) = AAZ%I%)O UG, AAZ;E — /) , for 2H(a,yt) =2 +iyt
% f(zw) - Alifﬁo i AAZEZ) /&) ; for Z@(a:, 0) ==z
% f(z7) = AA?%)O e AAZZ> S ; for 2 (vy ) =2 —iy .

2.3 Definition of the representational variation Az,
Definition 2.3.1

The variation of a C number in the definition of the representational derivative is

Azlzzl—i—(hl—zl) s heC s h—0 .
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The variation with respect to each representation has its own hj;.

Definition 2.3.2

The representing functional for the variation is

0z 0z
AzZ(ayy (1, 90)] = Az, 12) = a—xz Az + a—yl Ays .

Remarks 2.3.3

The transformation law for writing the various Az that appear in the representational deriva-
tives is

0z 0z
A22@17 yl) = 0_33? Axy + a_yj Ay,

The variation Az appears in each application of the representational derivative operator

d L fl An) — f(z)
o, { &) = Jim A,
Ay1—0

One might wish to use the conversion functions to rewrite the definition of the derivative so
that Az is not expressed in terms of (Axy, Ay;). Therefore, we will give careful attention to
representational derivatives of the mixed form

d o feet+ Ax) — f(20)
&y ) = Jlim A
Ay —0

Remarks 2.3.4

For the representing functional

22wy (21, 90)] = (22, 2))

we use the conversion functions
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$1($2,y2) = fx($2;y2) ) and 91(9527?/2) = fy(l‘m?h) )

but for the representing functional for the variation we use the reverse conversion functions

To(21,91) = fg/c(iflayl) ) and Ya(z1,91) = f;’,(ﬂfbyl) :

It is clear from the context which is which and we will give several examples. For conversion
functions like y* = o0 — y, we can easily obtain the conversion in either direction from a
single function.

Definition 2.3.5

For the case of

d . o . flet+AZT) — f(zT)
z [ = A ’
Ay—0
we have
M, yt) =w+iy"

with two conversion functions

I(I,y):.I ) and y+($,y):65—y :

The transformation law for the variation is

Azeyl(z, 30 —y")] = Af(zy) = % Az + —— Ay
_ 9 it 9,
— ax(aﬁ%y )Aa:+ay(:c+zy )Ay
a Y o f~
= 5ol +i® = y)]Ar+ 5[+ (5 )] Ay



Definition 2.3.6

For the case of

d ., flzm+ Az )= f(z7)
af(z )= %1%18 A ,

we have

Z(wy )=z —1y

with two conversion functions

r(z,y) =z , and y (z,y)=00+y .

The transformation law for the variation is

0z~ 0z~
A -0 — 1y~ = Az” =—A —A
Z(aa) (7, =00 —y7))] a(ay) = - Avt oy 2
0 0
= %(x —iy”) Az + a—y(m —iy")Ay
= 2[3: — z(oo —|—y)}Aa:+ ﬁ[x —z(oo —|—y)]Ay
Ox dy
= Ax — 1Ay
Definition 2.3.7
For the case of
d L flz4+ Az) — f(2)
1B = fim A !
Ayt —0
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we have

2(x,y) =x+iy

with two conversion functions

v,y =1w and y(z,y

The transformation law for the variation is

0z 0z
Azpz—yryllz,y)] = Az(z,y") = oy Dt i Ay*

Definition 2.3.8

For the case of

we have

2(z,y) =z +iy

with two conversion functions

ZE(ZE7y_):ZE ) and y(x,y‘)zy_—oo :
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The transformation law for the variation is

1
>
N

B

Q@\

|

|
>
&
+
>

Qﬁ\

Az —z—y- (2, y))]

Remarks 2.3.9

Notice that the variation is the same between the two cases of zT but the sign changes
between to the conversions to and from z~. This is a manifestation of the minus sign in

2T =x—1y
Definition 2.3.10
For the case of
d . [+ AY) = f()
dz f(&) = Ali«—m Az ’
Ay—0

we have

2'(r,0) = re?

with two conversion functions

r(z,y) = Va2 +y? | and O(x,y) = tan_lg .

The transformation law for the variation is
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We have shown in Example 2.1.7 that the conversion functions yield x + iy so

0 , 0 .
A (x,y) = %(Jc +iy) Az + a—y(ac +iy) Ay

= Az + 1Ay .
Definition 2.3.11
For the case of
d o flrHAz) — f(2)
2z 1) = dim A- :
AO—0

we have

2(xy) =x+1iy

with two conversion functions

z(r,0) =rcos(d) , and y(r,0) =rsin(0) .

The transformation law for the variation is

0z 0z
Azgopl(x.9)] = Ax(r.0) = o= Ar =5 A0

= %(m + iy) Ar + %(:ﬂ + iy) Af
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We have shown in Example 2.1.6 that the conversion functions yield re so

A (x,y) = 827“ (re’)Ar + % (re’)Ad

=e9Ar +ire® A .

Example 2.3.12

In this example we will consider the derivative of 32% with four different representational
derivatives.

Example 2.3.12.1

Consider the function f(z) = 322 and its representational derivative

d ., o flzt+ Az — f(2T)
3o/ = Jimg At
Ay—0

The conversion functions are

z(z,y) =z , and Yy (z,y)=00—y .

The transformation law for the variation is

Azzm-yryl(z,y)] = Azf(z,y)=Az—iAy .

Evaluation yields

3(z+ iyt + Az*)Q —3(x +iy+)2

Axz—0 Azt
Ay—0
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3[z+i(0—y) +Ax—iAy]2 —3[x—i(65—y)]2

- Alciclgo Az —iAy
Ay—0
 3[eti(8—y) — Ay - 3[e+i(— y)]’
= lim :
Ay—0 —1Ay
* im —61 [SL’ + i(oo - y) — z'Ay]
Ay—0 —1

This example has demonstrated the validity of the transformation law for the variation.

Example 2.3.12.2

Consider the function f(z) = 322 and its representational derivative

oy = g JEHAD =IO

Ar—0 Az
AO—0

The conversion functions are

x(r,0) = rcos(f) |, and y(r,0) =rsin(d) .

The transformation law for the variation is

Azgoyl(x,y)] = Az(r,0) =e?Ar +ire Ag

Converting to polar gives
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3(T€i6 + e Ar + ire'? A9)2 — 3(T€i9)2
Ar—0 e Ar + ire?? Af

3(7"6’0 + iret? AG) 2 _ 3 (rew)Q
AG—0 irei? AO

Gire' (rew + ire'? AH)

A0 iret?

I+

We have the correct transformation law for Az.

Example 2.3.12.3

Consider the function f(z) = 322 and its representational derivative

d . g . fEPHAL) — [0
Ef(z )= lim

Az—0 AZ(D
Ay—0

The conversion functions are

z(z,0) ==z |, and Y (2,0) =0 .

The transformation law for the variation is

Azpl(@,0)] = A(z,y) = %(a@)Ax =Az .

This case reduces to R. Note that the non-analyticity of the conversion functions

0 —y for Im(z) >0
oz, y) = | and yH(x,y) =<0 for Im(z) =0
0+ Yy for Im(z) <0
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only occurs in the ((z,?)) piece of the representation. This is exactly the piece which is
more properly treated with real rather than complex analysis, and complex analyticity
has nothing to do with real analysis. The conversion functions of the expansive ((x, {0, £00
—y*})) regions are themselves analytic so it is highly likely that the (z, {0, 50 — y*}))
representation shares all of the most favorable analytic properties of the z and 2’ repre-
sentations while having the added benefit of being one-to-one. Evaluation yields

d ne . 3(:6—1—A91;)2—3(:1:)2i ) B .
EB(Z) —Alirgo AL —Al;r£)106(x+A;1:)—6x—6z )

Example 2.3.12.4

Consider the function f(z) = 322 and its representational derivative

= g JEHAD=SO

Az—0 Az ’
Ay~ —0

The conversion functions are

$({L’,y7) =T , and y(:c,y*):y*—oo .

The transformation law for the variation is

Az sy y)l(z,y7)] = Az(z,y”)=Azr+iAy” .

Evaluation yields

d 2 3(2+Az)2—3(2)2
dz— 3<2) - Alalcrgo Az
Ay~ —0

. 2 N2
— lim B(x—i—zy—i—Az) —3(3:'—1—21/)

Az—0 Az
Ay~ —0

~ lm 3z +i(y” — ) —i—Aac—l—z'Ay}Q =3[z —i(y” —65)}2

Az—0 Az + 1Ay
Ay~ —0
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Ay——0 )

=6[z+i(y” —0)] =6(x +iy) =62 .

This example has demonstrated the validity of the transformation law for the variation.

Example 2.3.13

Consider the function f(z) = In(z) and its representational derivative

d . . . flzZ+Az7)— f(z7)
iR

The conversion functions are

r(z,y) =2z , and y (r,y) =0 +y .

The transformation law for the variation is

Azpl(z, -5 —y)] = Az (z,y) = Az —ilAy .

Evaluation yields

4 (=) = Jim In(z= 4+ Az7) —In(z7)

dz Az—0 Az~
Ay—0

_ lim In(x — iy~ + Az — iAy) — In(x — iy )

Az—0 Ax —iAy
Ay—0

_ lim In(x — iy~ + Az) — In(z — iy™)
Az—0 Az
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. 1 1 1
= lim - = — = — .
Az—0x —iy~ + Az x—iy- oz

Theorem 2.3.14

The representational derivative d/dz; obeys the chain rule.

Proof:

For proof by example, consider the derivative of f(z)=3z¢?* in the form

The conversion functions are

v,y =1, and y(z,y

The transformation law for the variation is

Azes gyl y)] = Az(r,y") = Ar —iAy" .

Evaluation yields

d 3(z + Az) e2(z+82) _ 3,022
——3ze** = lim ( )
dzt Az—0 Az

Ayt —0

3($ + iy + AZ) e2(z+iy+Az) _ 3(1’ + iy) 62(x+iy)

= lim
Az—0 Az
Ayt —0
: 3[z+i(30 — y*) + Az — iAyT] ety FAr—iyT]
= lim ; — ...
Az—0 Ax — Ayt
Ayt —0

3 + (5 — y*+)] X HE-v")
a Az — 1Ayt
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3z +i(a0—yT) —iAy*] e 2BYT _ 3lz+i(xc—yh)]

_ ety
. %A + . .~ + . + —2iA +
2 Q2+ @y iy —3ie”"7 — 6 [x + l(oo -y ) — 1Ay } e =Y
Ayt —0 —1

= At 1 6[r +i(55 —yT)]}

— 234 6(2 + iy)] = € (3 + 62)

We have shown that the representational derivative satisfies the chain rule.

Theorem 2.3.15

The complex exponential function e® is an eigenfunction of the representational derivative
operator d/dz;.

Proof:

It suffices to show that
d d

— et =t and — 2 =" |

dz; dz

where z; and z, are two representations of C. The first condition is satisfied by Theorem
2.2.3. For the second condition, consider

d ., o flzt+AZY) = f(2T)
o[ = Jlimg At ’
Ay—0

with two conversion functions

x(m,y):x ) and y+($,y):65—y .

The transformation law for the variation is (Definition 2.3.5)
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Az, 30 —y")] = Azf(z,y)=Az—iAy .

Evaluation yields

d N 2t Azt ez+
— e = lim
dz Az—0 Azt
Ay—0

iyt ALt it
et tiy +AzT et tiy

= lim
Az—0 Azt
Ay—0
T Hi(F—y)+Az—idy _ w+i(55-y)
= lim
Az—0 Ax — iAy
Ay—0
ex—l-i(&?—y)-!-Ax _ ez-&—i(&?—y)
= lim
Az—0 Ax
l lim €x+i(6¢37y)+Agc
Az—0
(55— iy +
_ e:(;+z(oo Y) — ex—i—zy — 7

Definition 2.3.16

When we write the representational derivative, the limits are in the representation of the
derivative and the function is in its own representation (which may or may not be the rep-
resentation of the derivative). When we implement the transformation law for the variation,
we are inserting the variation of the representation of the derivative into the other represen-
tation. Consider

d L flz1+Az) — f(=1)
o, {7 = Jim A,
Aya—0

Even after the variation has been transformed Az; — Az, everything in square brackets
remains in the z; representation.
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2.4 Definition of the modified representational variation Z;l
Remarks 2.4.1

We have shown that we have the correct transformation law for the variation with respect
to each representation. In this section, we will examine the definition of the variation and
propose a modified variation which obeys a separate transformation law. We will show that
the two transformations do not always agree, and that the transformation of the modified
variation does not always work for the definition of the derivative. Then we will show that
the transformation of the modified variation does always produce the correct derivative when
the trangformation is between the z and z* representations. This is due to the composition
laws of R and the properties of o0.

Example 2.4.2

The 1D case of

Ax::p+(h—m) , heR , h—0 .

gives a good illustration of the meaning of the definition of the variation. Considering three
points {0, z, h} along the real number line, we could shift the origin to any other x € R and
then write the definition of the variation with respect to those coordinates. For instance,
if we shift h — A’ then h — 0 no longer generates an appropriate variation. We need to
take h' — 0 which means h goes to whatever value we have used to shift the origin. By the
symmetry of the real line, either of these representations of the 1D variation Ax are exactly
the same. Therefore, define a representation of C such that

2@y (2, 9)] = (z,97) with D =x+iy .

We have two conversion functions

13(;E7y7) =T , and y($>y7) :7_y7 3

so that

(z,y) = 2(x,y") , and (z,y) = z(z,v)

(We have shifted the origin of y instead of # to mimic the structure of C.) For the ((z,y))
Cartesian representation of C, we have
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h1:a1+ib1 s and hyzx(CL?b)_{—Zy(a?b):a—i_l(’y_b)

Therefore, the modified variation transforms as
Az (w,y) =2+ (hy = 2)
= 2(2,y) + (hy — 27(2,9))
= a(z,y) + iy (0,y) + [ay +iby = (2(z,y) + iy (2,9))]
=z +i(y—y)+{atily—b) —[e+i(y—v)]}
—xtiy—iy+a+iv—ib—x—iy+iy
— (z+a—2)+ (iy—ib+iy) +iy

= Ax+i(”y—Ay)

The transformation law for the canonical variation Az gives

Az (z,y) = %[95 +7§(’y — y)}Am + (,%[x —l—i(’y — y)]Ay

= Azx —iAy .

We find

Az (2,y) = A (z,y) + i .

Therefore, the transformation law for the variation does not agree with our attempt to
transform the modified variation by directly converting its elements with the conversion
functions. We will show, however, that this not a problem in all cases.
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Definition 2.4.3

The modified representational variation of a C number is

Kzl:zl—l—(hl—zl) s hEC, h—20 s

so it is identically the representational variation Az;. The difference between Az; and A\zl
is that they obey different transformation laws.

Definition 2.4.4

We say the representing functional for the modified variation is

Aemam (@1, 00)] = Azi(x2, )

Definition 2.4.5

The modified variation A\zl transforms by direct substitution of the conversion functions.
The transformation law defined for

hy=a+1 , a,beR | a,b—0 ,
is

A\21(915273/2) = 21[71 (22, Y2), Y1 (22, y2)] + (xl(aa b) +iyi(a,b) — z1[z1(z2, y2), 91(1’27?&)])

Example 2.4.6

Take note of

Az (z,y) = a(z,y) — iy~ (z,y) + [2(a,b) — iy~ (a,b) — (a(2,9) — iy~ (2,7))]

Since z~ is a non-trivial representation, we may not directly decompose the z;[xy, 1] of
Definition 2.4.5 into a general form z;(z, y2) + iy1 (22, y2). For this reason, Definition 2.4.5
specifies h in the Cartesian representation. There are other cases in which h will not have
the form a + ib.
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Definition 2.4.7

The infinite continuation of A\zw is

A (zy) = lim Az (2y)

Y—00

Example 2.4.8

The continuation of Az’ to minus infinity, as defined, cannot be used to directly generate

Az . Instead we need to consider two conversion functions

—

x(x,y”l) =x and y(x,y”l) = gﬂ/ -

In this case y?" has the same form as y~ = 50 + y. The transformation law is

A (@yy) = 27 [, ),y (2 0)] + (2(a,0) + iy (a,8) — 27 [2(2,9), 57 (2, )

To mimic the form of z~, we will choose for this example

/

2 (x, y”l) =x—1y

Evaluation yields

/

Az (x,y) —z—iy’ + [a—ibw, — (ib’—iyvl)}
=z —i(y +y) +{a—i(y' +b) = [z —i(y +v)]}
=(z+a—2)+ily—b—y) -/

= Az —i(y + Ay)

Definition 2.4.9
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/

The infinite continuation of Ezw to Ez_ is

Ez+($,y) = limAﬁTz7 (x,y)

' —00

Remarks 2.4.10

If we transform the modified variation directly with the y®(y) conversion functions of the C
representation then we will get an undefined expression. For this reason, the infinite contin-
uation is defined as the limit of the finite behavior rather than the infinite behavior of the
transformation law for the modified variation.

Theorem 2.4.11

The infinite continuation of the transformation of the modified variation is undefined.

Proof:
Consider the conversion functions

v,y =1, and y(z,y

The transformation law for the modified variation is
Az (x,y) = 2 [x(z,y), y" (z,9)] + (z(a,b) +iy* (a,0) — 2 [z(z,y), y" (z,)])
=z + iy + [z(a,b) + iy (a,b) — (z +iy)]

=z+i(X—y)+{a+i(5-b) - [z +i(5 - y)]}

This expression is defined by the brackets but we have to remove the brackets to rearrange
for the transformed variation. Consider

A+ —_~ . .~ . .~ .
Az (z,y)=x+i0—iy+a+i00—ib—x —i00 + iy
=Ar+iAy+1i00+1i00 — 100 .
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By Remarks 1.3.15, this expression is undefined. We can also obtain a contradiction directly
from the definition of the variation. Consider two equivalent expressions such that

v+ (h—xz)=(z+h) -z
(—2)+[(B0-h) = (¥ —2)] = [((—2) + (% -h)] - (5 —=2)
(c—z)+(z—h)=[0— (z+h)] — (¥ —2)

(5 —h) = —h

Remarks 2.4.12

Although Az (z3,y2) and &’1({E27y2) are not always identically equal, there are cases in
which they do produce the same derivatives. We will show cases in which the derivatives

computed from each variation agree and disagree. Then we will show that A\zl is always
valid for the case of z; € C.

Definition 2.4.13

In the case of C representations, the rule for taking the derivative with the modified variation
is to compute the derivative with + and then let v — o0 once the expression is simplified.
Division by v shall always be avoided through L’Hopital’s rule.

Theorem 2.4.14

The modified variation, as defined, always produces the correct derivative for transforma-
tions between the Cartesian and C representations of C.

Proof:
Proof follows from Example 2.4.15, Example 2.4.16, Example 2.4.17, Example 3.2.6, and

Example 3.2.7.

Example 2.4.15

In this example we will compute the derivative of f(z) = z for the case of
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we have

2(xy) =x+1iy

with two conversion functions

(r,y’)=x | and y(x,y") =v—y" .

(The conversion functions use ~ instead of 50 because we will make the substitution only
after we have evaluated the definition of the derivative.) The transformation law for the
modified variation is

Az(z,y") = zla(e,y"), y(@,y")] + (x(a,b) + iy(a,b) — 2[x(z,y), 37 (,y)])
=z + iy + [z(a,b) +iy(a,b) — (z + iy)]

= Ax —iAy + iy .

Evaluation yields

4 lim flx+iy+ Az) — f(z +1y)
dz? AAya;‘/_—)?O A\Z

. fl@+i(y—y) + Az — iy +iy) — flz+i(y —y7))

2538 Az — 1Ay + 1y

_z+i(y—y) + Az +iy—z—i(y—y)
= lim .
Az—0 Az + iy
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Although ~ is taken as a finite number, the rule is to avoid division by v through application
of L’Hopital’s rule. Since v appears in numerator and the denominator, and since L’Hopital’s
rule is typically used for limits of the form oo/oc, we are well motivated to use this rule in
the derivative for the modified variation as if v was an infinite number. L’Hopital’s rule
yields

d
—z=Ilim 1=1
dzY Az—0

This is the correct answer but this example was trivial.

Example 2.4.16

In this example we will compute the derivative of f(z) = 2. For the case of

/\+
+ LA _ +
di () = 1im LT ij 1)
o %38 Az

we have

e, y') =x 4y,

with two conversion functions

r(x,y) =z , and y(ey)=v—y .

The transformation law for the modified variation is

sz(x, y) = Ax — iAy + iy

Evaluation yields

. i .
L (R S b ()
dz Az—0 o
Ay—0 Az
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. fle+i(y—y) + Az — iy +iy) — flz+i(y—y))
Az—0 Ax — 1Ay + 1y

[z +i(y—v) —iAy—i—z’vF — [x—i—i(y—y)]z

B Alzl/rilo —iAy + iy
Yy oy .
e 22 [+ i(y y) iAy + iv]
Ay—0 —1

=2[z+i(y—y) +in] =2[z+i(2y —y)]

Having evaluated the definition of the derivative, we let v — o0 so that

() = 20 +i(2% )
= 2[w—i—i(65—yﬂ

= 2[x—|—iy+]2 =221 .

This is the correct derivative.

Example 2.4.17

In this example we will compute the derivative of f(z) = 22 for the case of

ALY f(at
4ty i JE B 1
dz Az—0 ~
Ay—0 Az

we have

2w, y") =x 40y,

with two conversion functions
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z(z,y) =z , and y'(z,y) =v—y .

The transformation law for the modified variation is

A\zv(x,y) = Az —iAy+iy .

Evaluation yields

. o .
i(zvf _ im fla+iy"+ Az ) — f(z+y")
dz Az—0 o

Ay—0 Az

. (z+iy" + Az +iy)’ — (¢ +iy?)’

Az—0

Az + iy

;AliIEOS[x—i—i(y—y) +Ax+i7]2

=3[z +i(y—y) —H’ﬂZ
=3[z +i(y—y)P + 2izy — 37" + 2yy

= 3(27)° + 2izy — 32 + 29y .

Having evaluated the definition of the derivative, we let v — o0 so that

diz<z+)3 = 3(27)2—#2'00—00 + 0

=3[2* +2iz(c0 —y) — (50° — 2yx0 + y*)] +i0 — 0" + 0 .
This expression is well defined because the three infinities at end are distinct. Continued
evaluation yields

56



(=) :3{952—1—22':1:[(65—y) +5] + {(—5‘52 - y;) _652} 2y [(65_ y;) +651 }

2

:3{x2+2z‘x(65—y) + (_652_%> Loy (65_%}

= 3[2® + 2iz(c0 — y) + (-7 +2yx0 — y°) | = 3(2*)2 .

This is the correct derivative. Notice that we have used the composition law defined (Defi-
nition 1.3.17) such that

3 Proof of limits of sine and cosine at infinity

3.1 Refutation of proof of nonexistence of limits at infinity
Definition 3.1.1

We say that the limit of a sequence exists if and only if all of its subsequences converge to
the same value.

Theorem 3.1.2

It is impossible to compute the limits

lim f(z) = lim sin(z) |, and lim f(z) = lim cos(z) .
T—00 T—00 T—00 T—00

Proof (Refuted):

The definition of the limit requires that for a limit

lim f(x)=1 |,

T—r00
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to exist, the function f must converge to [ in all of its subsequences. For proof by
contradiction, consider two subsequences of x

T, = 2nT + g , and Ty = 2T,

For any n,m we have

sin(z,) =1 and sin(x,,) =0 .

Therefore, it is impossible for all subsequences of x to converge to some constant /.

Refutation:
The convergence of the sequences are determined by the final n points, not the first n
points. Since the points in z, and z,, are evenly spaced by 27 and the sequences both

terminate at infinity, we can write the final n points of each sequence as

Too—p = 00 — 20T and Tooom = 00 — 2MT .

Since o0 — n # o0, all of these points are distinct. It is obvious that both sequences
converge to the same value.

Remarks 3.1.3

Expressions like

f(z,) = sin(c0 — 2nm)

can be evaluated easily with the difference formulae once we get values for sin(ad) and
cos(o0). Note the property of R that for any a,b € R

< —(b+a)>0 = xX—-b>a .

This tells us that every R number of the form 33 — b is greater than every R number and

that every R number of the form —30 + b is less than every R number. In general, we say
that if a number is greater than every real number then it is equal to infinity but Theorem
1.5.2 states that
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0<oo—b<oo .

Therefore, make a definition that if x is larger than every b € R and is less than infinity then

—~

r=000 —¢& .

Since all numbers of the form o0 — 2n7m can be expressed as 560 — ¢ we may reexamine our
sequences. With these definitions we have

sin(z,,) = sin(c0 — ¢€) and sin(x,,) = sin(o0 — )

Therefore, the two sequences do converge to the same value. We have refuted the proof by
examining the final n points of z,, and z,, whereas the refuted proof has only examined the
first n points which have no bearing on the convergence of the final n points. Since the
absorptive property of oo is such that

00—E=00 ,

we should use the difference formula to write

sin(oco — ¢) = sin(oo) cos(e) — cos(oo) sin(e)

This cancels the absorption of co. For any 0 < e < 1

sin(oo) cos(g) — cos(oo) sin(e) # sin(oo)

Since sine and cosine are generally functions R — R, we need a way to express R numbers
as R numbers. With a caveat about absorption, oo — ¢ satisfies the main requirement

0<o0o—e<00 .

We might say that “co—¢” is a compound label referring to real numbers in the neighborhood
of infinity.
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Corollary 3.1.4

We have shown that C is the complement of C on S? in the limit where £33, 4150 — o0
(Corollary 1.4.16.) Now we have reason to consider another complementary arrangement on
S? and we will consider a great circle S! to simplify the statements. Since there are exactly
as many R numbers of the form 35+ b as there are non-zero R numbers, and every R number
of this form is greater than every R number, we should set the 1nﬁn1ty that R tends toward
on the equator of the sphere when 0 and o0 are the two poles. Since there are as many points
in the interval [0co — ¢, 00| as there are in [0, 00 — €], one would favor the representation in
which the area around the pole at infinity is stretched over an entire hemisphere because
the density of numbers on the surface of the sphere is uniform when R tends toward a value
on the equator. R numbers of the form o0 — b will also tend toward that same value for
increasing b € R. When R tends toward infinity at the opposite pole from its origin, then
every R number is squeezed to one side of the sphere. Regarding the refutation of Theorem
3.1.2, all the points in the R hemisphere can take the same value co — ¢ because the equator
is constrained to be adjacent to the pole. We might call the equatorial infinity that R and
R tend toward oo — € to distinguish it from the polar infinity 50, or we might even use the
label co. While that would bear a lot of further analysis, there are some immediate features
of interest in expanding the neighborhood of polar infinity to cover an entire hemisphere. By
the symmetry of the sphere, and by the symmetry of there being exactly as many positive
R numbers less than infinity as there are R numbers greater than zero, we can deduce that
the limits of sine and cosine at o0 should be the same as what they are at 0: the sphere
has mirror symmetry about it equator. Furthermore, since ¢ is vanishingly small, equatorial
infinity is separated from polar infinity by a vanishingly small distance. We may deduce the
behavior at the equator from the behavior at the pole because there is a representation in
which equatorial infinity is adjacent to polar infinity (Corollary 1.4.16.) In the next section,
we will use a totally different method to derive the behavior of sine and cosine at infinity
but we will find that it is exactly like the behavior at zero.

3.2 Proof of limits of sine and cosine at infinity
Theorem 3.2.1

The values of sine and cosine at infinity are

sin(co) =0 and cos(oc0) =1

Proof:

We have proven in Theorem 2.2.3 that

4
le

z2 22

=€
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For f(z) = e* in the case of

AT L p(at
LN (OSSO E (Col
dz Az—0 ~
Ay—0 Az

we have

oyt =a+ayt

with two conversion functions

LC(.T,y)ZLC ) and y+($,y):65—y .

The transformation law for the modified variation is

A\er(x,y) =Ax —iAy+i0 .

Evaluation yields

— e = lim
dz Az—0 ~
Ay—0 Az

eAzfiAerioo -1

vt 1.
e”tw Allm —
x—0 — 9 )
PNy Az — 1Ay + 100
Az+i30
iyt 1 € —1
=" lim ———
Az—0 Ax + 100
N T .A T
il e:C—Hy lim eAx—l—zoo _ e:c—l—zy A
Axz—0

The exponential is an eigenfunction of the derivative with eigenvalue 1 so
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1 = €' = cos(59) + isin(33)

Equating the real and imaginary parts gives

sin(a0) =0 and cos(o0) =1

Theorem is proven with

sin(o0) = sin(c0) and cos(00) = cos(00)

Theorem 3.2.2

The limits of sine and cosine at infinity are

lim sin(z) =0 and lim cos(z) =1
T—00 Tr—00

Proof:
A function has a limit [ if and only if the function converges to [ in any subsequence. We
have shown in the refutation of of Theorem 3.1.2 that the final n points of any sequence

sin(x,,) have the form sin(co — €). In the limit ¢ — 0 we find that for any z,, € R

lim sin(z,) = sin(co) and lim cos(z,) = cos(co)
n—oo n—oo

Theorem is proven with sin(co) = 0, cos(co) = 1, and z, — =.

Theorem 3.2.3

Sine and cosine are continuous at infinity.

Proof:

We say that a function is continuous at a point if

lim f(x) = f(zo)

T—T0
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Sine and cosine are such that

lim sin(z) = sin(c0) and lim cos(z) = cos(c0)
Tr—00 T—00

Both functions are continuous at infinity.

Theorem 3.2.4

The values of sine and cosine at oo preserve the odd- and evenness of sine and cosine respec-
tively.

Proof:

/

In Example 2.4.8 we found Az’ (x,y) which is continued to Kzi(x, y) as

Az (2,y) = Az — i(30 + Ay)

We can plug this into

d A — -
4 gy = g SEHED )

o %2538 Az
to obtain

d_ez_: lim f(Zi_’_A/Z\_)_f(Zi)
o 2538 Az
o —iAy—ioo 1
=% lim €

Ay—=0 — jAy — i 00

e —iy~ lim eszyfzoo :rfzy_efzoo
Az—0

=€

It follows that
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cos(—o0) =1 and sin(—20) =0 .

Therefore,

cos(—00) = cos(0) and sin(—00) = — sin(0)

Sine is an odd function and cosine is an even function.

Theorem 3.2.5

Sine and cosine satisfy the double angle identities at infinity.

Proof:
The relevant identities are

sin(2x) = 2sin(z) cos(x) and cos(2z) = 1 — sin®(x)

These identities are satisfied trivially for x = 0.

Example 3.2.6

To further confirm Theorem 2.4.14, namely that modified variation always produces the
correct derivative and that, therefore, the derivation of limits in this paper is completely
sound, we will now use the modified variation to compute a derivative which requires an
application of the chain rule. We will consider f(z)=3ze* in the case of

—~+
d . . . flzt+Az)— f(z")
2 1) = limy A

Ay—0

We have

o, y") =x+ay”
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with two conversion functions

r(r,y) =x and v (z,y) =7—y .

The transformation law for the modified variation is

Kz’y(x,y) = Az —iAy+iy .

Evaluation yields

7y
WA _ -
Ay Sy £ 8 — i)
dz Az—0 —

Ay—0 Az

¥ . 227 42Ax 420y ¥\ 227
T 3(27 4+ Az + iy)e 3(27)e

Az—0 Az + 1y

L lim [34 6(27 + Az + iq)] 2 T2AT0

= [346(2" +iy)]e> T .

We obtain the expression for zt by letting v — 0. This gives

di,lz 32te? = [3 + 6(ZJr + 165)] 2 T2
= {3+6[z+ (i50 — iy) + i }€2Z+62i65

= {3+6[z+ (i —iy)]}e* = (3+627)e2

This is the correct derivative.

Example 3.2.7
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To continue with the proof of Theorem 2.4.14, we will now use the modified variation to

compute a derivative which requires an application of the chain rule. We will consider
f(2)=T7z*tan(6z) in the

—~+

d . o . flzt+Az)— f(z")

3 [ = lim, A 7
Ay—0

variant of the representational derivative. Evaluation yields

-~y E\’Y . .
i?(zv)z‘tan(ﬁzv) = lim flatiy +4z) - flz+iy)
dz Azx—0 A\'Y

Ay—0 z

_ i 7(27 + Az + iv)Q tan(6z7 + 6Ax + 6iy) — 7(27)2 tan(627)

= Alim 14(27 + Az + i) tan(62” 4+ 6Az + 6iy) + ...

z—0

e+ T(27 + Az + i) 650c(1227 4 12A7 + 12i7)

= 14(27 + i) tan(627 + 6iy) + 7(27 +i7) 6 sec(1227 + 12i7)

We obtain the expression for z* by letting v — 0. This gives

d — - . -
P 7(z+)2 tan(62") = 14(z" 4+ i) tan(62" + 6i50) + 42(2" + 4 00)2 sec(122% + 12/ 0)
2

= 142" tan(627) + 42 (z+)2 sec(1227%) .

This is the correct derivative.

Remarks 3.2.8

We have introduced a rule (Definition 2.4.13) such that the modified variation in the deriva-
tive requires an application of L’Hopital’s where it is not independently motivated. To avoid
this, consider the definition
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We have written the variation of y~ € R as an R number when there is an argument to be
made that the variation of a R number should not have the same form as the variation of an
R number. In the interpretation where R numbers measure magnitude relative to the origin
at infinity, the limit of small variation is

Ay~ —-o0+0 .

Note that the composition laws of R+Rand R+ give
(30 +0) +0=(55+0b) + (30 +0)

Evaluating for f(z) = e* with the transformation for the canonical variation (Definition
2.3.8) yields

Ax+iAy~
. e —1
—e*=¢* lim

dz= Az—0_ Ax + 1Ay~
Ay~ —00
) eiAy_ 1
=e° lim

R - A
:ezezoo 1:€z 100 + B + 31 + ...
150 i

By taking the limit, we have obtained an expression of the indeterminate form oo/oo which
is an ordinary context for L’Hopital’s rule. Application of the rule yields

eiAy’ -1, A o
e lim —— = —je® lim ie"™Y =¢efe'™
Ay——30 ZAy+ Ay——33

z

The limits of sine and cosine at infinity may be derived from this expression too.
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